1. Suppose $R_1, ..., R_n$ are rings. Prove that $R_1, ..., R_n$ are unital if and only if $R_1 \times ... \times R_n$ is unital.

2. Suppose R is a unital ring. An element x of R is called a unit if it has a multiplicative inverse; that means $\exists x' \in R$ such that $x \cdot x' = x' \cdot x = 1_R$.

Let R^\times be the set of all the units of R.

(a) Prove that R^\times is closed under multiplication.

(b) Prove that (R^\times, \cdot) is a group.

(c) Suppose R_i's are unital rings. Prove that

$$(R_1 \times ... \times R_n)^\times = R_1^\times \times ... \times R_n^\times.$$

(d) Find $(\mathbb{Z} \times \mathbb{Q})^\times$.

3. Show that $\mathbb{Z}[a+b\sqrt{3} \mid a, b \in \mathbb{Z}]$ is a subring of \mathbb{R}.

4. As in problem 3 one can show $F = \mathbb{Q}[a+b\sqrt{3} \mid a, b \in \mathbb{Q}]$ is a ring. Show that F^\times is a field.
5. Suppose A is a ring with unity 1. Suppose there is $a_0 \in A$ such that $a_0^2 = 1$. Let $B = \{a_0 r a_0 | r \in A\}$. Prove that B is a subring of A.