Homework 6, math103b winter 2019

1. Suppose E is a field extension of \(\mathbb{Z}_3 \) that contains a zero \(\alpha \) of \(x^3 - x + 1 \).

 (a) Prove that \(\mathbb{Z}_3[\alpha] = \{ a_0 + a_1 \alpha + a_2 \alpha^2 | a_0, a_1, a_3 \in \mathbb{Z}_3 \} \).

 (b) Prove that \(\mathbb{Z}_3[\alpha] \) is a field and \(|\mathbb{Z}_3[\alpha]| = 27 \).

2. Let \(I = \{ 2p(x) + xq(x) | p(x), q(x) \in \mathbb{Z}[x] \} \). Prove that \(I \) is not a principal ideal and deduce that \(\mathbb{Z}[x] \) is not a PID.

3. Let \(\beta := \sqrt{1 + \sqrt{3}} \).

 (a) Prove that the minimal polynomial \(m_\beta(x) \) of \(\beta \) over \(\mathbb{Q} \) is \(x^4 - 2x^2 - 2 \).

 (b) Prove that

 \[
 \mathbb{Q}[\beta] = \{ a_0 + a_1 \beta + a_2 \beta^2 + a_3 \beta^3 | a_0, a_1, a_2, a_3 \in \mathbb{Q} \}.
 \]

 (c) Prove that \(\mathbb{Q}[\beta] \cong \mathbb{Q}[x]/(x^4 - 2x^2 - 2)\mathbb{Q}[x] \) and it is a field.

 (d) Write \(\beta^{-1} \) as a \(\mathbb{Q} \)-linear combination of \(1, \beta, \beta^2, \beta^3 \).