Lecture 03: Homomorphisms between \mathbb{Z}_n and \mathbb{Z}_m

Tuesday, January 15, 2019 11:40 AM

In the previous lecture we were proving

Theorem. Suppose $m, n \in \mathbb{Z}^+$, $m | n$. Let $\sigma_{n,m} : \mathbb{Z}_n \to \mathbb{Z}_m$,

$$\sigma_{n,m}(a) := \text{the remainder of } a \text{ divided by } m.$$ Then

$$\sigma_{n,m}(\sigma_{n,m}(b)) = \sigma_{m}(b) \text{ for any } b \in \mathbb{Z}; \text{ alternatively we say the following diagram commutes}$$

$$\begin{array}{c}
\mathbb{Z} \\
\sigma_{n,m}
\end{array} \quad \begin{array}{c}
\sigma_{m}
\end{array}
$$

And $\sigma_{n,m}$ is a ring homomorphism.

Pf. (Cont.) We have already proved that the above diagram commutes. Next we show why $\sigma_{n,m}$ is a ring homomorphism

$$\begin{array}{c}
\mathbb{Z}_n \\
\sigma_{n,m}
\end{array} \quad \begin{array}{c}
\sigma_{n,m}
\end{array}
$$

Notice that $\sigma_{n,m} |_{\mathbb{Z}_n} = \sigma_{m}$ and that is why the last equality holds.

Similarly

$$\begin{array}{c}
\mathbb{Z}_n \\
\sigma_{n,m}
\end{array} \quad \begin{array}{c}
\sigma_{n,m}
\end{array}
$$

$$= \sigma_{m}(a) \cdot \sigma_{m}(a') \text{ (Cm is a ring hom)}$$

$$= \sigma_{n,m}(a) \cdot \sigma_{n,m}(a'). \quad \blacksquare$$
Notice that \(c_{n,m} = c_m \mid Z_n \) is true for any pair \((n,m)\) of positive integers, \(c_m \) is always a ring hom; but \(c_{n,m} \) is a ring hom exactly when \(m \mid n \). The main reason is that \(Z_n \) is NOT a subring of \(Z \); and so \(c_m \) being a ring hom does not tell us much about \(c_{n,m} \).

Theorem (Chinese Remainder Theorem)

Suppose \(n,m \in \mathbb{Z}^+ \) and \(\text{gcd}(n,m) = 1 \). Then

\[
\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n.
\]

Pf. Let \(f: \mathbb{Z}_{mn} \rightarrow \mathbb{Z}_m \times \mathbb{Z}_n, f(a) := (c_{mn,m}(a), c_{mn,n}(a)) \)

Since \(m \mid mn \) and \(n \mid mn \), \(c_{mn,m} \) and \(c_{mn,n} \) are ring hom.

So \(f(a+a') = (c_{mn,m}(a+a'), c_{mn,n}(a+a')) \)

\[
= (c_{mn,m}(a) + c_{mn,m}(a'), c_{mn,n}(a) + c_{mn,n}(a'))
\]

\[
= (c_{mn,m}(a), c_{mn,n}(a)) + (c_{mn,n}(a), c_{mn,n}(a))
\]

\[
= f(a) + f(a');
\]

Similarly one can check that \(f(aa') = f(a) f(a') \).
So f is a ring homomorphism.

Injectivity. From group theory we know that a group homomorphism is injective if and only if $\ker f = \{0\}$.

Proposition from group theory Suppose $\phi: G_1 \to G_2$ is a group homomorphism, and G_1 and G_2 are two (abelian) groups.

Then ϕ is injective $\iff \ker \phi = \{0\}$.

Proof of Prop. (\implies) $g \in \ker \phi \Rightarrow \phi(g) = 0 = \phi(e)$

$\implies g = e$ as ϕ is injective.

(\impliedby) $\phi(g_1) = \phi(g_2) \Rightarrow \phi(g_1 - g_2) = 0 \Rightarrow \phi(g_1 - g_2) = 0$

$\Rightarrow g_1 - g_2 \in \ker \phi = \{0\}$

$\Rightarrow g_1 - g_2 = 0 \Rightarrow g_1 = g_2$.

$a \in \ker f \iff f(a) = (0, 0)$

$\iff C_{mn, m}(a) = 0$ and $C_{mn, n}(a) = 0$

$\iff m \mid a$ and $n \mid a$

$\iff \gcd(m, n) = 1$

$\iff mn \mid a$ $\iff a = 0$.

(See next page)
Recall. For any two integers \(m, n \), \(\exists r, s \in \mathbb{Z} \), \(\gcd(m, n) = mr + ns \).

In particular, \(\gcd(m, n) = 1 \) implies \(\exists r, s \in \mathbb{Z} \), \(mr + ns = 1 \).

Suppose \(m \mid a \) and \(n \mid a \). Then

\[
\begin{align*}
\frac{a}{m} & = \frac{a}{mn} \quad \text{implies} \quad \frac{a}{mn} \mid amr + ans, \\
\frac{a}{n} & = \frac{a}{mn} \quad \text{implies} \quad \frac{a}{mn} \mid am, \quad \text{and so by} \quad \frac{a}{mn} \mid a.
\end{align*}
\]

This is the cohort we have used.

Surjectivity Since \(f \) is injective and \(|\mathbb{Z}_{mn}| = |\mathbb{Z}_m \times \mathbb{Z}_n| \), by pigeonhole principle \(f \) is surjective.

Proposition. \(\mathbb{Z}_n^x = \{ a \in \mathbb{Z} \mid 0 \leq a < n, \gcd(a, n) = 1 \} \).

Pf. Suppose \(a \in \mathbb{Z}_n^x \). Then \(\exists a' \in \mathbb{Z}_n \), \(a.a' = 1 \) in \(\mathbb{Z}_n \); and so \(a.a' = 1 \pmod{n} \), which implies \(\exists b \in \mathbb{Z} \) s.t. \(aa' - 1 = nb \).

Suppose \(d = \gcd(a, n) \). Then \(d \mid aa' - nb \), which implies \(d \mid 1 \); and so \(\gcd(a, n) = 1 \).

If \(\gcd(a, n) = 1 \), then \(\exists r, s \in \mathbb{Z} \), \(ra + sn = 1 \); and so \(ra = 1 \pmod{n} \). Let \(a' \) be the remainder of \(r \).
Lecture 03: Euler's phi function

Friday, January 18, 2019 2:18 AM

\[a' a = 1 \text{ in } \mathbb{Z}_n; \text{ and so } a \in \mathbb{Z}_n^\times. \square \]

Corollary. Suppose \(p \) is prime. Then \(\mathbb{Z}_p \) is a field.

Proof. \(\mathbb{Z}_p \) is a unital commutative ring and \(0 \neq 1 \). So it is enough to show \(\mathbb{Z}_p^\times = \mathbb{Z}_p \setminus \{0\} \). By the previous theorem

\[\mathbb{Z}_p^\times = \{ a \in \mathbb{Z}_p \mid \gcd(a, p) = 1 \} = \{ a \in \mathbb{Z}_p \mid \alpha < a < p \} \]

\[= \mathbb{Z}_p \setminus \{0\}. \]

\(\square \)

Def. (Euler's phi function) \(\forall n \in \mathbb{Z}^+, \phi(m) := |\mathbb{Z}_n^\times|; \)

alternatively \(\phi(m) := |\{ a \in \mathbb{Z} \mid 0 < a \leq n, \gcd(a, n) = 1 \}|. \)

Ex. Suppose \(p \) is prime; then \(\phi(p) = p - 1. \)

Ex. Suppose \(p \) is prime and \(k \in \mathbb{Z}^+; \) then \(\gcd(a, p^k) = 1 \) exactly when \(p \nmid a \). Therefore

\[\phi(p^k) = p^k - |\{ a \in [1, p^k] \mid p \nmid a \}| \]

\[= p^k - (1, p, 2p, \ldots, p^{k-1}) = p^k / p = p^{k-1}(p-1). \]

Theorem. Suppose \(m, n \in \mathbb{Z}^+, \gcd(m, n) = 1; \) then \(\phi(mn) = \phi(m) \phi(n). \)
pf. By CRT, $\mathbb{Z}_{mn} \cong \mathbb{Z}_m \times \mathbb{Z}_n$; and so

$$|\mathbb{Z}_{mn}^x| = |(\mathbb{Z}_m \times \mathbb{Z}_n)^x| = |\mathbb{Z}_m^x \times \mathbb{Z}_n^x|,$$

which implies

$$\phi(mn) = \phi(m) \phi(n).$$

Def. Suppose A is a ring. Let $C_A := \{n \in \mathbb{Z}^+ | \forall a \in A, na = 0\}$. If $C_A = \emptyset$, we say characteristic of A is zero and write $\text{char}(A) = 0$. If $C_A \neq \emptyset$, we say $\text{char}(A) = \min C_A$.

So in either case we have $\forall a \in A$, $\text{char}(A) a = 0$.

Recall. Order of an element g in an abelian group G is the smallest positive integer d such that $d g = 0$. If there is no such positive integer, we say g is of infinite order. We denote order of g by $o(g)$. Here is the main property of order of an element:

$$ng = 0 \iff o(g) | n.$$

pf. (\Rightarrow) $o(g) | n \Rightarrow n = k o(g) \Rightarrow ng = (k o(g)) g = k (o(g) g) = k \cdot 0 = 0$.

(⇒) Let \(r \) be the remainder of \(n \) divided by \(o(g) \). Then

\[
n = q \cdot o(g) + r \quad \text{for some } q \in \mathbb{Z} \text{ and } 0 \leq r < o(g).
\]

So \(ng = (q \cdot o(g) + r) g = (q \cdot o(g)) g + rg = q (o(g) g) + rg = rg \)

\[\Rightarrow rg = 0; \quad \text{since } o(g) \text{ is the smallest positive integer s.t.}
\]

\(o(g) g = o, \quad r < o(g), \text{ and } rg = 0, \) we deduce that \(r \) is

not positive. As \(0 \leq r \), we deduce that \(r = 0 \), which means

\(o(g) | n \).

\[\text{Proposition. Suppose } \text{char } A \neq 0. \text{ Then} \]

\[\text{Char } A = \text{l.c.m. } o(a). \]

\[a \in A \]

\[\text{Pf. Let } n := \text{char } A. \text{ Then, for any } a \in A, \text{ } na = 0. \text{ By the} \]

above discussed property of groups, \(o(a) | n \). Hence \(n \) is

a common multiple of \(o(a) \)'s for \(a \in A \). Therefore

\[\text{l.c.m. } o(a) \leq n. \quad (I) \]

\[\text{a} \in A \]

In particular, \(m := \text{l.c.m. } o(a) < \infty. \text{ For any } a \in A, o(a) | m; \)
and so again by the above discussed property of groups, \(ma = 0 \)
for any \(a \in A \). Thus \(m e C_A \), which implies

\[
\text{char } A = \min C_A \leq m. \quad (\text{II})
\]

(I) and (II) imply \(\text{char } A = \text{l.c.m. } 0(a). \)