Lecture 08: Fermat's little theorem

Thursday, February 21, 2019 2:34 AM

In the previous lecture we defined the evaluation map and pointed out that two polynomials might give us the same functions.

Fermat's little theorem gives us one such example:

Theorem. Suppose \(p \) is prime. Then, for any \(a \in \mathbb{Z}_p \),

\[a^p = a. \]

Proof. \(\mathbb{Z}_p \) has characteristic \(p \). In your HW assignment you have proved that \((x+y)^p = x^p + y^p \) in \(\mathbb{Z}_p \).

Claim. \((x_1 + x_2 + \cdots + x_n)^p = x_1^p + \cdots + x_n^p \) for any \(x_i \in \mathbb{Z}_p \).

Proof of claim. We proceed by induction on \(n \). By the above implies the \(n=2 \) case.

Induction Step. \((x_1 + \cdots + x_n + x_{n+1})^p = (x_1 + \cdots + x_n)^p + x_{n+1}^p \)

\[= x_1^p + \cdots + x_n^p + x_{n+1}^p \quad \text{(induction hypothesis)} \]

For \(a \in \mathbb{Z}_p \), \(a^p = (1+1+\cdots+1)^p = 1^p + \cdots + 1^p = 1 + \cdots + 1 = a. \)

(\(a \) times) (\(a \) times) (by the above claim)
Lecture 08: Evaluation map

Let's recall the evaluation map: Suppose A is a subring of B and $b \in B$. Then the evaluation at b

\[\phi_b : A[x] \rightarrow B, \quad \phi_b(f) = f(b) \]

is a ring homomorphism

\[\text{Im } \phi_b = \{ \sum a_n x^n : a_n \in A, n \in \mathbb{Z}^+ \} \]

and

\[\text{ker } \phi_b = \{ \sum f(x) \in A[x] : b \text{ is a zero of } f(x) \} \].

Ex. Find \(\ker(\phi_{\sqrt{2}}) \) where \(\phi_{\sqrt{2}} : \mathbb{Q}[x] \rightarrow \mathbb{C} \)

is the evaluation at \(\sqrt{2} \).

Solution. \(f \in \ker \phi_{\sqrt{2}} \iff f(\sqrt{2}) = 0 \).

Notice that \((\sqrt{2})^2 - 2 = 0 \); and so \(\sqrt{2} \) is a zero of \(x^2 - 2 \). Next we notice that since \(\sqrt{2} \) is irrational, it is not a zero of a degree 1 polynomial in \(\mathbb{Q}[x] \):

\[
\begin{cases}
\alpha(\sqrt{2}) + b = 0 \\
\alpha \neq 0
\end{cases} \Rightarrow \sqrt{2} = -\frac{b}{\alpha} \in \mathbb{Q} \quad \text{which is a contradiction.}
\]

Claim. \(\ker \phi_{\sqrt{2}} = (x^2 - 2) \mathbb{Q}[x] \) (all the multiples of \(x^2 - 2 \)).

Proof of Claim. \(f(x) = (x^2 - 2)q(x) \Rightarrow f(\sqrt{2}) = (\sqrt{2})^2 q(\sqrt{2}) = 0 \)
Lecture 08: The evaluation homomorphisms
Friday, August 18, 2017

\[f(x) \in \ker \Phi_{\sqrt{2}}. \] Suppose \(g(x) \in \ker \Phi_{\sqrt{2}} \); we have to show
\(g(x) \) is a multiple of \(x^2 - 2 \). So we divide \(g(x) \) by \(x^2 - 2 \); and we have to argue why remainder is 0. By long division

\[\exists q, r \in \mathbb{Q}[x], \quad g(x) = (x^2 - 2)q(x) + r(x), \quad \deg r < 2. \]

\[\Rightarrow 0 = g(\sqrt{2}) = (\sqrt{2}^2 - 2)q(\sqrt{2}) + r(\sqrt{2}) = r(\sqrt{2}). \] Since \(\ker \Phi_{\sqrt{2}} \) has no degree 1 element, \(\deg r < 2 \), and \(r(\sqrt{2}) = 0 \), we deduce that \(r(x) = 0 \) is constant. As \(r(\sqrt{2}) = 0 \), we have \(r(x) = 0 \) and so \(g(x) = (x^2 - 2)q(x) \in (x^2 - 2) \mathbb{Q}[x]. \)

Ex. Is there a non-zero element in \(\ker \Phi_{\pi} \) where
\[\Phi_{\pi} : \mathbb{Q}[x] \to \mathbb{C} \] is the evaluation at the \(\pi \)?

Solution. No, it is a not-so-easy theorem in number theory that \(\pi \) is *not* a zero of a polynomial with rational coefficients. Such a number is called a *transcendental number.*

Def. \(a \in \mathbb{C} \) is called \underline{algebraic} if \(\ker \phi_a \neq \{0\} \),

where \(\phi_a : \mathbb{Q}[x] \rightarrow \mathbb{C} \) is the evaluation at \(a \).

- \(a \in \mathbb{C} \), which is not algebraic, is called a \underline{transcendental} number.

Next we use the division algorithm to study zeros of a polynomial.

Factor theorem. Let \(R \) be an integral domain and \(f(x) \in R[x] \). Then \(a \in R \) is a zero of \(f \) if and only if

\[f(x) = (x-a)q(x) \quad \text{for some } q(x) \in R[x] \]

Pf. \((\Rightarrow)\) Since the leading coeff. of \(x-a \) is 1 and \(1 \in U(R) \), by the division algorithm \(\exists q(x), r(x) \in R[x] \) s.t.

1. \(\deg r < \deg (x-a) = 1 \). \(\Rightarrow \) \(r \) is constant.

2. \(f(x) = (x-a)q(x) + r(x) \)

Since \(a \) is a zero of \(f \), \(\Rightarrow \) implies

\[0 = f(a) = (a-a)q(a) + r(a) ; \text{ and so } r(a) = 0. \]
Since \(r \) is constant, we get that \(r(x) = r(a) = 0 \).

So \(f(x) = (x-a)q(x) \). And so \(a \) is a zero of \(f \). \(\blacksquare \)

Theorem. Let \(D \) be an integral domain, and \(f(x) \in D[x] \).

Suppose \(a_1, \ldots, a_k \) are distinct zeros of \(f(x) \). Then

\[\exists q(x) \in D[x] \text{ s.t. } f(x) = (x-a_1) \ldots (x-a_k) q(x). \]

In particular, a polynomial \(f \) has at most \(\deg(f) \) zeros.

Proof. We proceed by induction on \(k \).

Base of induction. \(k = 1 \).

\(a_1 \) is a zero of \(f \). So by the factor theorem,

\[f(x) = (x-a_1)q(x) \text{ for some } q(x) \in D[x]; \text{ this proves the base of induction.} \]

Induction step. Suppose \(a_1, \ldots, a_{k+1} \) are distinct zeros of \(f(x) \).

Since \(a_{k+1} \) is a zero of \(f \), by the factor theorem

\[\exists h(x) \in D[x] \text{ s.t. } f(x) = (x-a_{k+1})h(x). \text{ So, for any} \]

...
\[1 \leq i \leq k, \quad o = f(a_i) = (a_i - a_{k+1}) h(a_i). \] Since

\[o = (a_i - a_{k+1}) h(a_i) \implies h(a_1) = h(a_2) = \ldots = h(a_k) = 0. \]

for \(1 \leq i \leq k \), where \(D \) has no zero-divisor.

So \(a_1, \ldots, a_k \) are distinct zeros of \(h \). Hence by the induction hypothesis we have that

\[h(x) = (x-a_1) \ldots (x-a_k) q(x) \]

for some \(q(x) \in D[x] \). Therefore

\[f(x) = (x-a_{k+1}) h(x) = (x-a_1) \ldots (x-a_k) (x-a_{k+1}) q(x). \]

This gives us the first part of the theorem.

To get the second part of the theorem, we have

\[\deg f = \deg (x-a_1) \ldots (x-a_k) q(x) = k + \deg q, \]

which implies \(\deg f \geq k \). So \(f \) has at most \(\deg f \) zeros. \[\Box \]
Notice that $x^2 - 1$ has 4 zeros in \mathbb{Z}_{15}.

$(\pm 1)^2 = 1$ in \mathbb{Z}_{15} and $(\pm 4)^2 = 1$ in \mathbb{Z}_{15}; hence in the previous statement it is important that D is an integral domain. We can use Chinese Remainder Theorem to show that $x^2 - 1$ has exactly 4 solutions in \mathbb{Z}_{15}. By CRT, $\mathbb{Z}_{15} \cong \mathbb{Z}_3 \times \mathbb{Z}_5$; since \mathbb{Z}_3 and \mathbb{Z}_5 are field, $x^2 - 1$ has at most two zeros in \mathbb{Z}_3 and \mathbb{Z}_5; and they are ± 1.

So $x^2 - 1$ has exactly 4 zeros in $\mathbb{Z}_3 \times \mathbb{Z}_5$ which are $(\pm 1, \pm 1)$.
Next we see how Fermat’s little theorem can help us determine if a given polynomial has a zero in \mathbb{Z}_p or not.

It is essentially based on the following observation:

Lemma. For any prime p, positive integer n, and $a \in \mathbb{Z}_p$,

$$a^{p^n} = a \quad \text{in} \quad \mathbb{Z}_p.$$

Proof. We proceed by induction on n. Fermat’s little theorem gives us the base case of $n=1$. **Induction Step.**

$$a^{p^{n+1}} = (a^{p^n})^p = (a^p)^n = a.$$

Ex. Does $x^{(5^{10})} - x + 2$ have a zero in \mathbb{Z}_5?

Solution. By the previous lemma, for any $a \in \mathbb{Z}_5$, we have

$$a^{(5^{10})} - a + 2 = a - a + 2 = 2 \neq 0.$$

So $x^{(5^{10})} - x + 2$ does not have a zero in \mathbb{Z}_5. ■
Ex. Does $x^{50} - x + 2$ have a zero in \mathbb{Z}_5?

Solution. We write 50 in base -5.

$50 = (5^2)(2)$.

For any $a \in \mathbb{Z}_5$,

$a^{50} - a + 2 = (a^{5^2}) - a + 2$

$= a^2 - a + 2$.

Now that we have a polynomial with small degree we can evaluate at all the elements of \mathbb{Z}_5.

<table>
<thead>
<tr>
<th>a</th>
<th>0</th>
<th>1</th>
<th>-1</th>
<th>2</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^2 - a + 2$</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

So $x^{50} - x + 2$ does not have a zero in \mathbb{Z}_5. ■