Problem set

1. Suppose E is a finite integral domain of characteristic p. Let $F_p : E \to E, F_p(x) := x^p$. Prove that F_p is a ring isomorphism. (Long ago in class we proved that F_p is a ring homomorphism in any ring of characteristic p when p is prime. Go over your notes and rewrite that part of the argument as well. Notice that you have to argue why p is prime and why F_p is a bijection.)

Proof. Since E is finite ring, characteristic of E cannot be 0 (otherwise $\{1, 1 + 1, \ldots \}$ is infinite set in E). Moreover, since E is a domain, we have seen in class that characteristic p has to be a prime number.

Note that using binomial theorem

$$F_p(x + y) = (x + y)^p = \sum_{i=0}^{p} \binom{p}{i} x^i y^{p-i} = x^p + y^p = F_p(x) + F_p(y)$$

, since p divides $\binom{p}{r}$ for $0 < r < p$. Moreover, since E is commutative $F_p(xy) = x^py^p = F_p(x)$ for all $x, y \in E$. Thus F_p is a ring homomorphism.

Note that $\ker(F_p) \subset E$ is an ideal since F_p is a ring homomorphism. However the only possible ideals in a field E (finite integral domain is a field) are $\{0\}$ or E. Since $F_p(1) = 1$, we get that $\ker(F_p) = \{0\}$ thus F_p is injective. Since E is finite, F_p is bijective hence an isomorphism.

2. (a) Prove that the minimal polynomial of $\alpha = \sqrt{1 + \sqrt{3}}$ is $f(x) = x^4 - 2x^2 - 2$.

Proof. Note that $\alpha^2 - 1 = \sqrt{3}$, hence $(\alpha^2 - 1)^2 = 3$ which simplifies to $f(\alpha) = 0$. To show that $f(x)$ is the minimal polynomial satisfying $f(\alpha) = 0$, we need to show $f(x)$ is irreducible. We obtain this by applying Eisenstein’s criterion for prime $p = 2$.

(b) Prove that $\mathbb{Q}[\alpha] := \{c_0 + \cdots + c_3\alpha^3 | c_0, c_1, c_2, c_3 \in \mathbb{Q}\}$ is a subring of \mathbb{C}.

1
3. Suppose \(E \) is an isomorphism theorem.

(a) Prove that \(\ker \alpha \) that \(\alpha \) is a (non-zero) constant as polynomial. Hence \(\ker \phi \) no zeros. Moreover \(f \) Let \(g(x) = f(x) + r(x) \) where \(\deg(f) > \deg(r) \).

We apply it in our situation by noting that any polynomial in \(\alpha \) (call it \(g(\alpha) \)), \(g(\alpha) = f(\alpha)q(\alpha) + r(\alpha) = r(\alpha) \) since \(f(\alpha) = 0 \), where degree of \(r(x) \) is less than 3. That is to say \(g(\alpha) = r(\alpha) = a_0 + a_1\alpha + a_2\alpha^2 + a_3\alpha^3 \in Q[\alpha] \).

Multiplication or addition in \(Q[\alpha] \) is a polynomial in \(\alpha \) hence by above argument it can be represented by elements in \(Q \).

(c) Prove that \(Q[x]/\langle f(x) \rangle \cong Q[\alpha] \).

Proof. Let \(\phi_\alpha : Q[x] \to C \) be the evaluation homomorphism which takes any polynomial \(g(x) \) to \(g(\alpha) \in C \). Observe that from previous problem we note that image of \(\phi_\alpha \) is \(Q[\alpha] \).

Moreover we know that \(Ker(\phi_\alpha) = \langle f(x) \rangle \), so the required result follows from the first isomorphism theorem.

(d) Write \(\alpha^{-1} \) in term of \(c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3 \) with \(c_i \in Q \).

Proof. Observe that \(f(\alpha) = \alpha^4 - 2\alpha^2 - 2 = 0 \), thus by dividing \(\alpha \), we obtain \(\alpha^3 - 2\alpha - 2 \alpha^{-1} = 0 \) which implies

\[
\alpha^{-1} = \frac{\alpha^3 - 2\alpha}{2}.
\]

(e) Write \((1 + \alpha)^{-1} \) in the form \(c_0 + c_1\alpha + c_2\alpha^2 + c_3\alpha^3 \) with \(c_i \in Q \).

Answer. Let \(g(y) = f(y - 1) = (y - 1)^4 - 2(y - 1)^2 - 2 = y^4 - 4y^3 + 4y^2 - 3 \), and note that \(g(\alpha + 1) = f(\alpha) = 0 \). Thus by the same procedure as before, \(y^3 - 4y^2 + 4y - \frac{3}{y} = 0 \) for \(y = \alpha + 1 \), which implies

\[
(\alpha + 1)^{-1} = \frac{(\alpha + 1)^3 - 4(\alpha + 1)^2 + 4(\alpha + 1)}{3}
\]

3. Suppose \(E \) is a finite field that contains \(Z_3 \) as a subring. Suppose there is \(\alpha \in E \) such that \(\alpha^3 - \alpha + 1 = 0 \). Let \(\phi_\alpha : Z_3[x] \to E \) be the map of evaluation at \(\alpha \).

(a) Prove that \(\ker \phi_\alpha = \langle x^3 - x + 1 \rangle \).

Proof. Note that \(Z_3 \) is a field hence \(Z_3[x] \) is a principal ideal domain (PID) and \(\phi_\alpha \) is a homomorphism. Thus \(\ker \phi_\alpha = \langle g(x) \rangle \) for some \(g(x) \in Z_3[x] \).

Let \(f(x) := x^3 - x + 1 \). Note that \(f(x) \) is irreducible since it degree 3 polynomial with no zeros. Moreover \(\phi_\alpha(f(x)) = f(\alpha) = 0 \), thus \(f(x) \in \ker \phi_\alpha = \langle g(x) \rangle \), which implies \(f(x) = g(x)h(x) \). Since \(f(x) \) is irreducible and \(g(x) \) is not a constant polynomial, \(h(x) \) is a (non-zero) constant as polynomial. Hence \(\ker \phi_\alpha = \langle f(x) \rangle \).
(b) Prove that \(\text{Im} \phi_\alpha = \{ c_0 + c_1 \alpha + c_2 \alpha^2 | c_0, c_1, c_2 \in \mathbb{Z}_3 \} \).

Proof. Note that image of \(\phi_\alpha \) consists of all polynomials in \(\alpha \) (i.e \(g(\alpha) \in E \) where \(g(x) \in \mathbb{Z}_3[x] \)). We have seen that euclidean algorithm for polynomials over any field, thus for any polynomial \(g(x) \in \mathbb{Z}_3[x] \), there exists polynomials \(q(x), r(x) \in \mathbb{Z}_3[x] \) such that \(g(x) = q(x)f(x) + r(x) \) where \(3 \deg(f) > \deg(r) \). Applying this to our situation, we see that \(g(\alpha) = r(\alpha) = c_0 + c_1 \alpha + c_2 \alpha^2 \), where \(c_i \in \mathbb{Z}_3 \).

(c) Let us denote the image of \(\phi_\alpha \) by \(\mathbb{Z}_3[\alpha] \). Prove that \(\mathbb{Z}_3 \) is a finite field with 27 elements.

Proof. Note that \(c_0 + c_1 \alpha + c_2 \alpha^2 = 0 \) implies \(c_0 = c_1 = c_2 = 0 \) because \(f(x) = x^3 - x + 1 \) is the minimal polynomial satisfying \(f(\alpha) = 0 \). Thus \(c_0 + c_1 \alpha + c_2 \alpha^2 = b_0 + b_1 \alpha + b_2 \alpha^2 \) implies \(c_i = b_i \) for all \(i \). Hence by using part (b) we conclude that \(\mathbb{Z}_3[\alpha] \) is in set theoretic bijection with \(\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3 \) given by \((c_0 + c_1 \alpha + c_2 \alpha^2) \mapsto (c_0, c_1, c_2) \). Thus there are precisely \(3^3 = 27 \) elements in \(\mathbb{Z}_3[\alpha] \).

Note that \(\mathbb{Z}_3[\alpha] \) is a subring of the field \(E \) (since it is the image of a homomorphism), thus \(\mathbb{Z}_3[\alpha] \) is an integral domain. Since any finite integral domain is a field, we conclude \(\mathbb{Z}_3[\alpha] \) is a field. \(\square \)

4. Suppose \(I \) and \(J \) are two ideals of a commutative ring \(R \).

(a) Prove that \(I \cap J \) is an ideal of \(R \).

Proof. Let \(a, b \in I \cap J \) and \(r \in R \), then \(a, b \in I \) and \(a, b \in J \). Since \(I \) and \(J \) are ideals, \((a + b), ar \) are both in \(I \) and \(J \), hence \((a + b), ar \in I \cap J \). Thus \(I \cap J \) is an ideal. \(\square \)

(b) Let \(I + J := \{ x + y | x \in I, y \in J \} \). Prove that \(I + J \) is an ideal of \(R \).

Proof. Let \(a = (x + y), b = (x' + y') \in I + J \) and \(r \in R \), then \(a + b = (x + x') + (y + y') \in I + J \) and \(ar = (xr + yr) \in I + J \). Hence \(I + J \) is an ideal. \(\square \)

5. Suppose \(R \) is a unital commutative ring and \(x_1, \ldots, x_n \in R \).

(a) Let \(I = Rx_1 + Rx_2 + \cdots + Rx_n = \{ r_1 x_1 + \cdots + r_n x_n \} \), where \(Rx_i = \langle x_i \rangle \). Prove that \(I \) is an ideal.

Proof. The proof is nearly same as the proof of part (b) of the previous problem. \(\square \)

(b) Prove that the ideal \(I \) is the smallest ideal that contains \(x_1, \ldots, x_n \).

Proof. Note that \(I \) contains \(x_1, \ldots, x_n \) so we need to show that for any ideal \(J \subset R \) containing \(x_1, \ldots, x_n \) we have \(I \subset J \). Any element \(a \in I \) can be written as \(a = r_1 x_1 + \cdots + r_n x_n \), we need to show that \(a \in J \). This follows since \(x_i \in J \) and \(r_i \in R \), we get \(r_i x_i \in J \) and hence \(\sum_{i=1}^{n} r_i x_i = a \in J \) since \(J \) is an ideal. \(\square \)
6. Let $I := \langle 2, x \rangle = \{2f(x) + xg(x) : f, g \in \mathbb{Z}[x] \}$. Prove that I is not a principal ideal. Deduce that $\mathbb{Z}[x]$ is not a PID.

Proof. Suppose $I = \langle h(x) \rangle$ for some $h(x) \in \mathbb{Z}[x]$. Note that $2 = h(x)q(x)$ and $x = h(x)r(x)$ for some $q(x), r(x) \in \mathbb{Z}[x]$ because $2, x \in I$. We use $2 = h(x)q(x)$ to conclude that $\deg h(x) = 0$ as polynomial, thus $h(x) = c$ where $c|2$. Moreover since $r(1) = cr(1)$, evaluating this equation at $x = 1$, we get $1 = cr(1)$ where $c \in \mathbb{Z}$, thus $c = \pm 1$.

Although since $c \in I$, there exists $f(x), g(x) \in \mathbb{Z}[x]$ such that $c = 2f(x) + xg(x)$. Evaluating this equation at $x = 0$ we get $c = 2f(0) + 0g(0) = 2f(0)$, since $c = \pm 1$ and $f(0) \in \mathbb{Z}$, we get a contradiction. \hfill \square

7. Suppose E is a finite field that contains \mathbb{Z}_p as a subring. Suppose $a \in \mathbb{Z}_p^\times$. Suppose there is $\alpha \in E$ such that $\alpha^p - \alpha + a = 0$.

(a) Prove that $\alpha + 1, \alpha + 2, \ldots, \alpha + (p - 1)$ are zeroes of $g(x) = x^p - x + a$.

Proof. Note that since characteristic of E is p, $(\alpha + \beta)^p = \alpha^p + \beta^p$ for all $\alpha, \beta \in E$. Thus

$$(\alpha + i)^p - (\alpha + i) + a = \alpha^p - \alpha + a + i^p - i = 0,$$

since $\alpha^p - \alpha + a = 0$ and by Fermat’s little theorem $i^p - i = 0$ for $i \in \{0, 1, \ldots, p - 1\}$. Thus $\alpha, \alpha + 1, \alpha + 2, \ldots, \alpha + (p - 1)$ are zeroes of $g(x) = x^p - x + a$. \hfill \square

(b) Prove that in $E[x]$ we have

$$x^p - x + a = (x - \alpha)(x - \alpha + 1) \ldots (x - \alpha + p - 1).$$

Proof. By using generalized factor theorem $h(x) := (x - \alpha)(x - \alpha + 1) \ldots (x - \alpha + p - 1)$ divides $g(x) = x^p - x + a$ since $\alpha, \alpha + 1, \alpha + 2, \ldots, \alpha + (p - 1)$ are distinct zeros of $g(x)$. Observe that $\deg h(x) = \deg g(x)$, thus $g(x) = ch(x)$, and since leading term of both $g(x)$ and $h(x)$ are 1, we get $g(x) = h(x)$ as required. \hfill \square

(c) Suppose $f(x)$ is a (monic) divisor of $g(x) = x^p - x + a$. Argue why $f(x) = (x - \alpha - i_1) \ldots (x - \alpha - i_d)$ for some $i_1, \ldots, i_d \in \mathbb{Z}_p$.

Proof. We can write $g(x) = f(x)t(x)$ for some polynomial $t(x) \in E[x]$. Since $g(\alpha + i) = 0$ for $i \in \{0, 1, \ldots, p - 1\}$, for each i, either $f(\alpha + i) = 0$ or $t(\alpha + i) = 0$. Let $S = \{i \mathbb{Z}_p : f(\alpha + i) = 0\}$ and $T = \{i \in \mathbb{Z}_p : t(\alpha + i) = 0\}$, thus $S \cup T = \{0, 1, \ldots, p - 1\}$.

By generalized factor theorem,

$$q_1(x)\prod_{i \in S}(x - \alpha - i) = f(x)$$

$$q_2(x)\prod_{i \in T}(x - \alpha - i) = t(x)$$
and we have $\deg f(x) = |S| + \deg q_1(x)$ and $\deg t(x) = |T| \deg q_2(x)$. We also know $\deg f(x) + \deg t(x) = \deg g(x) = p$, we get $|S| + |T| + \deg q_1(x) + \deg q_2(x) = p = |S \cup T|$ which is only possible when $\deg q_i = 0$ for $i = 1, 2$ and $S \cap T = \{\}$. In particular we get $f(x) = \prod_{i \in S}(x - \alpha - i)$ as required.

(d) Show that coefficient of x^{d-1} of f is $-(d\alpha + i_1 + \cdots + i_d)$.

Proof. We have $f(x) = (x - \alpha - i_1) \cdots (x - \alpha - i_d)$, simply by expanding the polynomial we see that coefficient of x^{d-1} is $-(\alpha + i_1) - \cdots - (\alpha + i_d) = -(d\alpha + i_1 + \cdots + i_d)$.

(e) Suppose $f(x) \in \mathbb{Z}_p[x]$ is a divisor of $x^p - x + a$ and $0 < \deg f < p$. Prove that $\alpha \in \mathbb{Z}_p$.

Proof. Note that $f(x) \in \mathbb{Z}_p[x]$ implies that coefficient of x^{d-1} is in \mathbb{Z}_p. Thus by part (b), $d\alpha + i_1 + \cdots + i_d \in \mathbb{Z}_p$ which implies $\alpha \in \mathbb{Z}_p$ since $i_1, \ldots, i_d \in \mathbb{Z}_p$ and $0 \neq d \in \mathbb{Z}_p$ (we have used that fact that \mathbb{Z}_p is a field).

(f) Use previous part and Fermat’s little theorem to get a contradiction, and deduce that $x^p - x + a$ is irreducible.

Proof. Suppose $f(x)$ is a divisor of $x^p - x + a$ such that $0 < \deg f < p$, then by previous part $\alpha \in \mathbb{Z}_p$. By Fermat’s theorem, we know $\alpha^p - \alpha = 0$ which is a contradiction because α is a zero of $x^p - x + a$ (that is $\alpha^p - \alpha + a = 0$) and $a \in \mathbb{Z}^\times$.