Math 109: The second exam.
 Instructor: A. Salehi Golsefidy

Name: . Solution....................................
PID: ...
$11 / 18 / 2015$

1. Write your Name and PID on the front of your exam sheet.
2. No calculators or other electronic devices are allowed during this exam.
3. Show all of your work; no credit will be given for unsupported answers.
4. Read each question carefully to avoid spending your time on something that you are not supposed to (re)prove.
5. Ask me or a TA when you are unsure if you are allowed to use certain fact or not.
6. Good luck!

Question	Points	Score
1	10	
2	8	
3	10	
4	5	
5	7	
Total:	40	

1. Let $A=\{4 k \mid k \in \mathbb{Z}\}$ and $B=\{n \in \mathbb{Z}|6| n\}$. (For each part justify your answer. for the first two parts your justification can be rather brief.)
(a) (2 points) Find the smallest positive element of $A \cap B$.
(b) (3 points) Find the smallest positive element of $A \triangle B$.
(c) (5 points) Let $f: A \times B \rightarrow \mathbb{Z}, f((m, n))=m+n$. Is $1 \in \operatorname{Im}(f)$?
(a) We are looking for smallest positive integer that is a multiple of 4 and 6 . So the answer is 12 .
(b) we are looking for smallest positive integer that is either a multiple of 4 or a multiple of 6, but not a multiple of both 4 and 6 . So the answer is 4 .
[For (a) and (b), you could write

$$
\begin{aligned}
& A=\{\cdots,-4,0,4,8,12, \ldots\} \\
& B=\{\ldots,-6,0,6,12,18, \ldots\}
\end{aligned}
$$

So as we can see 12 is the smallest positive integer in $A \cap B$, and $4 \in(A \cup B) \backslash(A \cap B)=A \Delta B$ is the smallest positive integer in $A \Delta B \cdot]$
(c) $1 \in \operatorname{Im}(f) \Longleftrightarrow \exists x, y \in \mathbb{Z}, \quad 1=4 x+6 y$.

This cannot happen as 1 is odd and $2(2 x+3 y)$ is even. So $1 \notin \operatorname{Im}(f)$.
2. (8 points) Let A, B, and C be sets. Prove that $(A \cup B) \backslash(A \cup C)=B \backslash(A \cup C)$.

Proof 1. $(A \cup B) \backslash(A \cup C)=(A \cup B) \cap(A \cup C)^{c}$

$$
\begin{aligned}
& =(A \cup B) \cap\left(A^{c} \cap C^{c}\right) \\
& =\left((A \cup B) \cap A^{c}\right) \cap C^{c} \\
& =\left(\left(A \cap A^{c}\right) \cup\left(B \cap A^{c}\right)\right) \cap C^{c} \\
& =\left(\varnothing \cup\left(B \cap A^{c}\right)\right) \cap C^{c} \\
& =B \cap\left(A^{c} \cap C^{c}\right) \\
& =B \cap(A \cup C)^{c} \\
& =B \backslash(A \cup C)
\end{aligned}
$$

Proof 2. $x \in(A \cup B) \backslash(A \cup C) \Leftrightarrow x \in A \cup B \wedge x \notin A \cup C$

$$
\begin{aligned}
& \Leftrightarrow(x \in A \vee x \in B) \wedge(x \notin A \wedge x \notin C) \\
& \Leftrightarrow[(x \in A \vee x \in B) \wedge x \notin A] \wedge x \notin C \\
& \Leftrightarrow[(x \in A \wedge x \notin A) \vee(x \in B \wedge x \notin A)] \wedge x \notin C \\
& \Leftrightarrow \underbrace{}_{\text {always true }} \\
& \Leftrightarrow x \in B \wedge x \notin A \wedge x \notin C \\
& \Leftrightarrow x \in B \wedge x \notin A \cup C \\
& \Leftrightarrow x \in B \backslash(A \cup C)
\end{aligned}
$$

(because of (II), (ill) (because of (II), (III).)
Proof 3.

$x \in A$	$x \in B$	$x \in C$	$x \in A \cup B$	$x \in A \cup C$	$x \in(A \cup B) \backslash(A \cup C)$	$x \in B \backslash(A \cup C)$
T	T	T	T	T	F	F
T	T	F	T	T	F	F
T	F	F	T	T	F	F
F	T	T	T	T	F	F
F	T	F	T	F	F	F
F	F	T	F	T	F	F
F						
	(I)		(III)	F	Fame columns.	

Page 3
3. For a real sequence a_{1}, a_{2}, \ldots, we say $\lim _{n \rightarrow \infty} a_{n}=L$ if

$$
\forall \varepsilon>0, \exists N \in \mathbb{Z}^{+}, n \geq N \Rightarrow\left|a_{n}-L\right|<\varepsilon
$$

(a) (6 points) Use quantifiers to say what it means to say $\lim _{n \rightarrow \infty} a_{n}$ does not exist.
(b) (4 points) Prove that $\lim _{n \rightarrow \infty}(-1)^{n}$ does not exist. (Hint: use proof by contradiction and assume $\lim _{n \rightarrow \infty}(-1)^{n}=L$ for some $L \in \mathbb{R}$.)
(a) $\forall L \in \mathbb{R}, \exists \varepsilon>0, \forall N \in \mathbb{Z}^{+}, \exists n \in \mathbb{Z}^{+}, n \geq N \wedge\left|a_{n}-L\right| \geq \varepsilon$.
(b) Suppose to the contrary that $\lim _{n \rightarrow \infty}(-1)^{n}=L$.

So $\forall \varepsilon>0, \exists N \in \mathbb{Z}^{+}, n \geq N \Rightarrow\left|(-1)^{n}-L\right|<\varepsilon$.
In particular, $\exists N \in \mathbb{Z}^{+}, \quad n \geq N \Rightarrow\left|(-1)^{n}-L\right|<1 / 2$.

$$
\begin{equation*}
\Rightarrow\left|(-1)^{N}-L\right|<1 / 2 \text { and }\left|(-1)^{N+1}-L\right|<1 / 2 \tag{I}
\end{equation*}
$$

Notice that $(-1)^{N}=1 \Rightarrow(-1)^{N+1}=-1$
and $(-1)^{N}=-1 \Rightarrow(-1)^{N+1}=1$. So implies
$|1-L|<1 / 2$ and $|-1-L|<1 / 2$. Hence
$L-1>-1 / 2$ and $L+1<1 / 2$. Therefore
$L>1 / 2$ and $L<-1 / 2$ which is a contradiction.
4. (5 points) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{\geq 0}, f(x)=x^{2}$ and $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=x+1$. Find the following functions if there are defined:

$$
f \circ f, \quad f \circ g, \quad g \circ g, \quad g \circ f .
$$

Justify your answers.

$$
\mathbb{R} \xrightarrow{p} \mathbb{R}^{20} \quad \mathbb{R} \xrightarrow{g} \mathbb{R}
$$

- Since $($ codomain of $f) \neq($ domain of $g)$, $g \circ f$ is NOT defined
- Since (codomain of $f) \neq$ (domain of f), fof is NOT defined.

$$
(f \circ g)(x)=f(g(x))=f(x+1)=(x+1)^{2}
$$

$$
(g \circ g)(x)=g(g(x))=g(x+1)=(x+1)+1=x+2
$$

5. (7 points) Let $f: X \rightarrow Y$ be a function. Suppose $g \circ f=I_{X}$, for some function $g: Y \rightarrow X$, where I_{X} is the identity function on X. Prove that f is injective.

$$
\begin{aligned}
f\left(x_{1}\right)=f\left(x_{2}\right) & \Rightarrow g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right) \\
& \Rightarrow(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right) \\
& \Rightarrow I_{x}\left(x_{1}\right)=I_{x}\left(x_{2}\right) \\
& \Rightarrow x_{1}=x_{2} .
\end{aligned}
$$

