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1. Write your Name and PID on the front of your exam sheet.

2. No calculators or other electronic devices are allowed during this exam.

3. Show all of your work; no credit will be given for unsupported answers.

4. Read each question carefully to avoid spending your time on something that
you are not supposed to (re)prove.

5. Ask me or a TA when you are unsure if you are allowed to use certain fact or
not.

6. Good luck!

Question Points Score

1 10

2 8

3 10

4 5

5 7

Total: 40
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1. Let A = {4k| k ∈ Z} and B = {n ∈ Z| 6|n}. (For each part justify your answer.
for the first two parts your justification can be rather brief.)

(a) (2 points) Find the smallest positive element of A ∩B.

(b) (3 points) Find the smallest positive element of A4B.

(c) (5 points) Let f : A×B → Z, f((m,n)) = m + n. Is 1 ∈ Im(f)?
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2. (8 points) Let A,B, and C be sets. Prove that (A∪B)\ (A∪C) = B \ (A∪C).
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3. For a real sequence a1, a2, . . ., we say limn→∞ an = L if

∀ε > 0,∃N ∈ Z+, n ≥ N ⇒ |an − L| < ε.

(a) (6 points) Use quantifiers to say what it means to say limn→∞ an does not
exist.

(b) (4 points) Prove that limn→∞(−1)n does not exist. (Hint: use proof by
contradiction and assume limn→∞(−1)n = L for some L ∈ R.)

Page 4



4. (5 points) Let f : R → R≥0, f(x) = x2 and g : R → R, g(x) = x + 1. Find the
following functions if there are defined:

f ◦ f, f ◦ g, g ◦ g, g ◦ f.

Justify your answers.
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5. (7 points) Let f : X → Y be a function. Suppose g ◦f = IX , for some function
g : Y → X, where IX is the identity function on X. Prove that f is injective.
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