In the previous lecture we defined **conditional propositions** a.k.a. **implications**.

If \(P \), then \(Q \). \(P \implies Q \).

And its truth table is

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \implies Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

Since in mathematics we often deal with this type of propositions, let’s try to find new forms of such propositional form.

What does it mean for \(P \implies Q \) to fail? For you to show me this implication fails, you have to provide a situation where \(P \) is true and \(Q \) is false, which means

\[\neg(P \implies Q) \equiv P \land (\neg Q) \]

Let’s double check this using the truth table.
<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>\neg Q</th>
<th>P \Rightarrow Q</th>
<th>\neg (P \Rightarrow Q)</th>
<th>P \land (\neg Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

So by de Morgan’s law we have
\[P \Rightarrow Q \equiv \neg (P \land \neg Q) \equiv \neg P \lor Q \]
\[\equiv Q \lor (\neg P) \]
\[\equiv (\neg Q) \Rightarrow (\neg P) . \]

- \(\neg Q \Rightarrow \neg P \) is called the **contrapositive** of \(P \Rightarrow Q \), and it is a useful method to prove things.
- Before we see some examples, let me warn you that \(P \Rightarrow Q \not\equiv Q \Rightarrow P \) is called the **converse** of \(P \Rightarrow Q \).

Ex. (Kenken)

```
  3+2 4+1 1+3
  1 3 2
  2 3 1
```

- In the blue box we can have either \[
\begin{array}{c}
1 \\
3
\end{array}
\] or \[
\begin{array}{c}
3 \\
1
\end{array}
\].

If the second case happens, we would have two 3’s in a row, which is a contradiction. So the first case happens.
a row, which is a contradiction. So the first case happens.
In the yellow box there are two possible cases \(\frac{1}{2} \) or \(\frac{2}{1} \).
If the first case happens, we would get two 1s in a row, which is a contradiction. Hence the second case is true.

The only remaining possibility for \(\frac{1}{2} \) is 3.
Similarly we have that \(\frac{2}{1} \) is 2.
Using the same logic we have that \(\frac{1}{2} \) and \(\frac{2}{1} \) are 2 and 1, respectively.

In this game, you see how we use case-by-case proof together with proof by contradiction together in our daily games or decisions.

Def. Suppose \(m \) and \(n \) are two integers. We say \(m \) divides \(n \) if for some integer \(k \) we have
\[
 n = mk.
\]
(we also say \(m \) is a divisor of \(n \), or \(n \) is a multiple of \(m \)) we denote it by \(m \mid n \).
n is a multiple of m) We denote it by \(m \mid n \).

Ex. \(1 \mid n \) for any integer \(n \).

Pf. For any integer \(n \), \(n = (n)(1) \). So \(n \) is a multiple of 1. ■

Ex. For non-zero integers \(a \) and \(b \), \(a \mid b \implies |a| \leq |b| \).

Pf. \(a \mid b \implies \) for some integer \(k \), \(b = ak \)

\[\implies |b| = |a||k|. \]

Claim \(k \neq 0 \).

Pf. of claim. Suppose to the contrary that \(k = 0 \). Then

\[b = (a)(0) = 0, \] which contradicts the assumption that \(b \) is non-zero.

Since \(k \) is a non-zero integer, we have \(|k| \geq 1 \).

Hence \(|b| = |a||k| \geq |a| \) as \(|b| \geq 0 \). ■

Warning. By *multiple*, we mean integer multiple. We are NOT allowed to multiply by fractions.

We also discussed that, if \(P \implies Q \) and \(Q \implies P \) are true, then \(P \) and \(Q \) are equivalent. And we showed this using the truth table:

\[
\begin{array}{c|c|c|c|c|}
P & Q & P \implies Q & Q \implies P & (P \implies Q) \land (Q \implies P) \\
T & T & T & T & T \\
T & F & F & T & T \\
F & T & T & F & T \\
F & F & T & T & F \\
\end{array}
\]

both are true.
<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

both are true.

both are false.