- 1. (a) Prove that for any integer n one and exactly one of the numbers n and n+1 is even.
 - (b) Prove that , for any integer n, n (n+1) is even.

(Hint . For @ use the result that we proved in class:

For any integer m, m is odd if and only if m=2k+1 for some integer k.

For 6, use part (a.)

- 2. Prove that $201 \times -9y = 2$ has no integer solutions.
- 3. Prove that for any positive real numbers x, y, z $\sqrt{\frac{x^2+y^2+z^2}{3}} \geq \frac{x+y+z}{3}$

(You are allowed to use whatever is proved in class.)

- 4. Determine if the following statements are true or not. Justify your answer.
 - (a) For any integers m and n, $6 \mid mn \implies 6 \mid m \vee 6 \mid n.$

- (b) For any integers m and n, $\text{Im } \vee \text{ G[n } \Longrightarrow \text{ G[mn]}.$
- (c) For any integers m and n, $3 | mn \Rightarrow 3 | m \vee 3 | n$

(For part (c) you are allowed to use the following:

For any integer n, $3 \nmid n \iff$ for some integer k, $n = 3k \pm 1$.)

5. Let d be an integer more than 1, and a_1, a_2, b_1 , and b_2 are integers. Suppose $d | a_1 - a_2 |$ and $d | b_1 - b_2$.

Prove that $d | (a_1 + b_1) - (a_2 + b_2)$.

and $d | a_1 b_1 - a_2 b_2$.

(<u>Hint</u>. For the second part use

$$a_1b_1 - a_2b_2 = (a_1 - a_2)b_1 + a_2(b_1 - b_2)$$