1. Prove that $P(\{1,2,...,n\})$ has 2^n elements.

(<u>Hint</u>. Use induction on \underline{n} . And follow an argument presented in class 1:e. split the subsets into two groups:

those that do not contain n+1, and those that do contain n+1.)

2. List the elements of $X = \{A \subseteq \{1,2,3\} \mid A \text{ is even } \}$ and the elements of $Y = \{A \subseteq \{1,2,3\} \mid A \text{ is odd } \}$.

3. Find the truth-value of the following statements; justify your answer:

(a) There are No sets A and B such that

A ∈B A A⊆B.

(b) $\{\emptyset\} \subseteq \{1,2,\}\emptyset\}$.

4. Prove that, for any two sets A and B,

 $A \subseteq B \iff A = A \cap B$

(Hint. Use a similar argument as in the lecture.)

5. (a) Prove that $A \triangle A = \emptyset$ and $A \triangle \emptyset = A$

(b) Prove that $A \triangle B = A \triangle C \implies B = C$

(Hint. You are allowed to use

 $X \triangle (Y \triangle Z) = (X \triangle Y) \triangle Z$

	without proof.)											
6.	Use	quanif	iers	to a	write	down	that	A⊆ R	does	NOT	have	
(u m	inimun	n -									