1. Prove that for any integer \(n \) one and exactly one of the numbers \(n \) and \(n+1 \) is even.

(b) Prove that, for any integer \(n \),

\[n(n+1) \] is even.

Solution (a) \(n \) is even \(\implies n = 2k \) for some integer \(k \)

\[\implies n+1 = 2k+1 \]

\[\implies n+1 \] is odd (we proved in class)

\(n \) is odd \(\implies n = 2k+1 \) for some integer \(k \)

\[\implies n+1 = 2k+2 = 2(k+1) \]

\[\implies n+1 \] is even as \(k+1 \) is integer.

(b) Case-by-Case

Case 1. \(n \) is even.

\[2 \mid n \implies n = 2k \] for some integer

\[\implies n(n+1) = 2k(n+1) \]

\[\implies 2 \mid n(n+1) \] as \(k(n+1) \) is integer.

Case 2. \(n \) is odd.

\[n \] is odd \(\implies n+1 \] is even \(\implies n+1 = 2k' \) for some (part a)

\[\implies n(n+1) = 2k'n \]

\[\implies 2 \mid n(n+1) \] as \(k'n \) is integer.

Second Proof. We prove by contradiction. Suppose to the contrary that \(n(n+1) \) is odd for some integer \(n \).

\(\implies n \) and \(n+1 \) are odd (in class we proved \(mn \) is odd \(\iff m \) and \(n \) are odd.)
which contradicts part (a).

2. Prove that $201x - 9y = 2$ has no integer solution.
 Solution. Suppose to the contrary that it has integer solutions x_0, y_0.
 \[2 = 201x - 9y_0 = 3(67x - 3y_0) \quad \Rightarrow \quad 3 \mid 2 \quad \text{as} \quad 67x_0 - 3y_0 \] is integer \[\Rightarrow \exists 2 < 3 \quad \text{which is a contradiction} \quad \text{(in class we proved)} \]
 For non-zero integers a, b, $a \mid b \Rightarrow |a| \leq |b|$. \]

3. Prove that for any positive real numbers x, y, z
 \[\frac{\sqrt{x^2 + y^2 + z^2}}{3} \geq \frac{x + y + z}{3} \]
 Proof. Backward argument
 \[\frac{\sqrt{x^2 + y^2 + z^2}}{3} \geq \frac{x + y + z}{3} \iff \frac{x^2 + y^2 + z^2}{3} \geq \left(\frac{x + y + z}{3}\right)^2
 \]
 \[\iff \frac{x^2 + y^2 + z^2}{3} \geq \frac{x^2 + y^2 + z^2 + 2xy + 2xz + 2yz}{9}
 \]
 \[\iff 9x^2 + 9y^2 + 9z^2 \geq x^2 + y^2 + z^2 + 2(xy + xz + yz)
 \]
 \[\iff 2(x^2 + y^2 + z^2) \geq 2(xy + xz + yz)
 \]
 \[\iff x^2 + y^2 + z^2 \geq xy + xz + yz \quad \text{(is proved in class.)} \]

4. Determine if the following statements are true or not.
 Justify your answer.
 (a) For any integers m and n,
 \[6 \mid mn \iff 6 \mid m \lor 6 \mid n \]
 (b) For any integers m and n,
(b) For any integers \(m \) and \(n \),
\[6 \mid m \lor 6 \mid n \implies 6 \mid mn. \]

(c) For any integers \(m \) and \(n \),
\[3 \mid mn \implies 3 \mid m \lor 3 \mid n. \]

Solution. (a) False; let \(m = 3 \) and \(n = 2 \).
Then \(6 \mid (3)(2) \) and \(6 \nmid 3 \) and \(6 \nmid 2 \).

(If \(6 \mid 3 \), then \(6 \leq 3 \) which is a contradiction.
If \(6 \mid 2 \), then \(6 \leq 2 \).)

(b) Case-by-case.

Case 1. \(6 \mid m \).
\[6 \mid m \implies m = 6k \text{ for some integer } k \]
\[\implies mn = 6kn \]
\[\implies 6 \mid mn \text{ as } kn \text{ is an integer.} \]

Case 2. \(6 \mid n \)

By a similar argument as in case 1, we have \(6 \mid mn \).

(c) We prove by contradiction. Suppose to the contrary that for some integers \(m \) and \(n \) we have
\[3 \mid mn, \ 3 \mid m, \ 3 \mid n. \]
So by the hint there are integers \(k, l \) s.t. \(m = 3k + 1 \) and \(n = 3l + 1 \).

Hence
\[mn = (3k + 1)(3l + 1) \]
\[= 9kl + 3l + 3k + 1 \]
\[= 3(3kl + l + k + 1). \]
\[= 3(3k \pm l \pm k) \pm 1. \]
\[3 \mid mn \Rightarrow mn = 3k' \text{ for some integer } k'. \]
\[\text{(i), (ii) } \Rightarrow 5k' - 3(3kl \pm l \pm k) = \pm 1. \]
\[\Rightarrow \pm 3(k' - kl \pm l \pm k) = 1 \]
\[\Rightarrow 3 \mid 1 \Rightarrow 3 \leq 1 \text{ which is a contra.} \]

5. Let \(d \) be an integer more than 1, and \(a_1, a_2, b_1, \) and \(b_2 \) are integers. Suppose \(d \mid a_1 - a_2 \) and \(d \mid b_1 - b_2. \)

Prove that \(d \mid (a_1 + b_1) - (a_2 + b_2) \) and \(d \mid a_1 b_1 - a_2 b_2. \)

Proof. \(d \mid a_1 - a_2 \Rightarrow \) for some integer \(k, \)

\[a_1 - a_2 = dk \]
\[d \mid b_1 - b_2 \Rightarrow \) for some integer \(l, \)

\[b_1 - b_2 = dl. \]

\[(a_1 + b_1) - (a_2 + b_2) = (a_1 - a_2) + (b_1 - b_2) \]
\[= dk + dl \]
\[= d(k + l) \]
\[\Rightarrow d \mid (a_1 + b_1) - (a_2 + b_2) \text{ as } k + l \text{ is an integer.} \]

\[a_1 b_1 - a_2 b_2 = (a_1 - a_2)b_1 + a_2(b_1 - b_2) \]
\[= dk b_1 + a_2 dl \]
\[= d(k b_1 + a_2 l) \]
\[d \mid a_1 b_1 - a_2 b_2 \text{ as } kb_1 + a_2 l \text{ is an integer.} \]