Math 109: The final exam.
 Instructor: A. Salehi Golsefidy

Name: \qquad
PID:

$$
12 / 06 / 2016
$$

1. Write your Name and PID on the front of your exam sheet.
2. No calculators or other electronic devices are allowed during this exam.
3. Show all of your work; no credit will be given for unsupported answers.
4. Read each question carefully to avoid spending your time on something that you are not supposed to (re)prove.
5. Ask me or a TA when you are unsure if you are allowed to use certain fact or not.
6. Good luck!

Question	Points	Bonus Points	Score
1	10	0	
2	5	0	
3	10	0	
4	10	0	
5	10	0	
6	10	0	
7	35	0	
8	0	10	
Total:	90	10	

1. (10 points) Which one of the following propositional forms is not equivalent to $(P \wedge Q) \Rightarrow R$? Justify your answer.
2. $(P \wedge Q \wedge \neg R) \Rightarrow \perp$, where \perp means contradiction,
3. $(\neg R) \Rightarrow((\neg P) \vee(\neg Q))$,
4. $(P \Rightarrow R) \wedge(Q \Rightarrow R)$,
5. $(P \Rightarrow R) \vee(Q \Rightarrow R)$.
6. (5 points) Let $a_{0}=0$ and $a_{n+1}:=\sqrt{2+a_{n}}$. Prove that, for any $n \in \mathbb{Z}^{+}$, we have $a_{n}<2$.
7. (10 points) Write the negation of the following proposition (each part has 5 points):
(a) $\forall X \subseteq \mathbb{R},((\exists m \in \mathbb{R}, \forall y \in X, m \leq y) \Rightarrow(\exists x \in X, \forall y \in X, x \leq y))$.
(b) $\forall a, n \in \mathbb{Z}^{+},\left(\operatorname{gcd}(a, n)=1 \Rightarrow\left(\exists d \in \mathbb{Z}^{+}, a^{d} \equiv 1(\bmod n)\right)\right)$.
8. Suppose A and B are two non-empty sets. Suppose $f: A \rightarrow B$ and $g: B \rightarrow A$ are two functions such that $f \circ g=I_{B}$.
(a) (6 points) Prove that g is injective.
(b) (4 points) Is f necessarily injective?
9. (10 points) Prove that, for $a, b, c \in \mathbb{Z}^{+}$, if $\operatorname{gcd}(a, b)=1$ and $a \mid b c$, then $a \mid c$.
10. (10 points) Find $x, y \in \mathbb{Z}$ such that $763 x+91 y=\operatorname{gcd}(763,91)$.
11. For each question give a short answer. You are allowed to use all the results proved in the lectures:
(a) (5 points) Let A be a subset of X. Let $f: P(X) \Rightarrow P(X), f(B)=B \triangle A$, where $P(X)$ is the power set of X. Prove that f is a bijection. (Hint: consider $f \circ f$.)
(b) (5 points) Prove that, for any integers a, b we have $5 \mid a b$ implies that either $5 \mid a$ or $5 \mid b$.
(c) (5 points) Let $g:\{0, \cdots, 5\} \rightarrow\{0, \cdots, 5\}$ be such that $g(x) \equiv 2 x(\bmod 6)$. Is g bijective?
(d) (5 points) Give an infinite set which is not enumerable.
(e) (5 points) Find $x \in \mathbb{Z}$ such that $7 x \equiv 3(\bmod 76)$.
(f) (5 points) What is the remainder when 120620161395 is divided by 11 ?
(g) (5 points) What is the remainder when 7^{2018} is divided by 10? (Hint: $\left.7^{2} \equiv-1(\bmod 10)\right)$.
12. (Bonus) Suppose p is an odd prime.
(a) (3 points (bonus)) Prove that for any a in $\{1,2, \ldots, p-1\}$ there is a unique a^{\prime} in $\{1,2, \ldots, p-1\}$ such that $a a^{\prime} \equiv 1(\bmod p)$. (We called a^{\prime} a modular inverse of a modulo p.)
(b) (2 points (bonus)) Let $f:\{1,2, \ldots, p-1\} \rightarrow\{1,2, \ldots, p-1\}$ be a function such that $f(a)$ is a modular inverse of a modulo p. Prove that f is a bijection. (Hint: consider $f \circ f$.)
(c) (3 points (bonus)) Show that $f(a)=a$ if and only if either $a=1$ or $a=p-1$.
(d) (2 points (bonus)) Prove that $(p-1)!\equiv-1(\bmod p)$. (Hint: Using part (3) any number $a \in\{2, \ldots, p-2\}$ can be paired with $f(a)$.)
