1. Prove that, for any integer $n, \quad 2 \mid n(n+1)$.
2. Suppose p is prime, i.e. $p|a b \Rightarrow p| a \vee p \mid b$ for integers a, b, and $p>1$. Prove that for integers a, b

$$
p=a b \Rightarrow(p= \pm a \vee p= \pm b)
$$

3. For integers d, a, b, prove that

$$
(d|a \wedge a| b) \Rightarrow d \mid b
$$

4. Prove that for integers d, m, n, r, and s,

$$
\left.\begin{array}{l}
d \mid m \\
d \mid n
\end{array}\right\} \Rightarrow d \mid r m+s n
$$

5. Is it true or false?

For any integer $a, b, 6 \mid a b \Longrightarrow(61 a \vee 61 b)$.
6. Prove that, for any integer $n>1$,

7. Prove for any positive real numbers x, y,

$$
\sqrt{x y} \geq \frac{2}{\frac{1}{x}+\frac{1}{y}}
$$

