Problem set 5 Sunday, October 30, 2016 8:13 AM 1. Write down the negation of the following statements: (a) $\forall \varepsilon > 0$, $\exists \varepsilon > 0$, $|x-1| < \delta \Rightarrow |x^2-1| < \varepsilon$. (b) $\forall \epsilon > \sigma$, $\forall x \in \mathbb{R}$, $\exists n \in \mathbb{Z}$, $|x-n| < \epsilon$ (c) Let & be an irrational number, i.e. XERNQ. $\forall \epsilon > 0$, $\forall x \in \mathbb{R}$, $\exists m, n \in \mathbb{Z}$, $|x - m - n < | < \epsilon$. 2. (2) Prove or disprove: = x e R, y e R, y > 2016+x (b) Prove or disprove: $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^3 > 2016 + x$ (c) Prove or disprove: $\forall \epsilon > 0$, $\exists N \in \mathbb{Z}^{>0}$, $n \ge N \Rightarrow \frac{1000}{n} < \epsilon$. (For part (c), you are allowed to use the following: ∀xeR, ∃neZ, x<n.) 3. Prove that $\forall L_1, L_2 \in \mathbb{R}, ((\forall \epsilon > 0, |L_1 - L_2| < \epsilon) \Rightarrow L_1 = L_2)$. 4. (a) Use quantifiers to give a precise formulation of: the sequence x_n gets closer and closer to a. (Hint A bit more precise statement would be: for large enough n, x_n is ε -close to α . (b) Suppose there are two sequeces x_n^+ and x_n^- which get closer and closer to \underline{a} and at the same time $f(x_n^+)$ gets closer and closer to L_1 and $f(x_n)$ gets closer and closer to L_2 where $L_1 \neq L_2$. Prove lim f(x) does NOT exist.