1. Write down the negation of the following statements:
(a) $\forall \varepsilon>0, \exists \delta>0, \quad|x-1|<\delta \Rightarrow\left|x^{2}-1\right|<\varepsilon$.
(b) $\forall \varepsilon>0, \forall x \in \mathbb{R}, \exists n \in \mathbb{Z}, \quad|x-n|<\varepsilon$
(c) Let α be an irrational number, i.e. $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.

$$
\forall \varepsilon>0, \quad \forall x \in \mathbb{R}, \quad \exists m, n \in \mathbb{Z}, \quad|x-m-n \alpha|<\varepsilon
$$

2. (a) Prove or disprove: $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^{2}>2016+x$
(b) Prove or disprove: $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, y^{3}>2016+x$
(c) Prove or disprove: $\forall \varepsilon>0, \exists N \in \mathbb{Z}^{0}, n \geq N \Rightarrow \frac{1000}{n}<\varepsilon$.
(For part (c), you are allowed to use the following:

$$
\forall x \in \mathbb{R}, \exists n \in \mathbb{Z}, \quad x<n .)
$$

3. Prove that $\forall L_{1}, L_{2} \in \mathbb{R},\left(\left(\forall \varepsilon>0,\left|L_{1}-L_{2}\right|<\varepsilon\right) \Rightarrow L_{1}=L_{2}\right)$
4. (a) Use quantifiers to give a precise formulation of: "the sequence x_{n} gets closer and closer to a."
(Hint A bit more precise statement would be:
"for large enough n, x_{n} is ε-close to a ".
(b) Suppose there are two sequeces x_{n}^{+}and \bar{x}_{n} which get closer and closer to \underline{a} and at the same time $f\left(x_{n}^{+}\right)$gets closer and closer to L_{1} and $f\left(x_{n}^{-}\right)$gets closer and closer to L_{2} where $L_{1} \neq L_{2}$. Prove $\lim _{x \rightarrow a} f(x)$ does NOT exist.
