In the previous lecture we proved

Lemma. For any integers \(a\) and \(b\),

\[(a \mid b \land b \neq 0) \Rightarrow |a| \leq |b|.

Let's see some of its applications:

Q. Does the equation \(14\ m - 49\ n = 1\) have integer solutions? (This type of equations are called Diophantine equations.)

Solution. No! Suppose to the contrary that there are integers \(m\) and \(n\) such that

\[14\ m - 49\ n = 1.

Then the left hand side \(14m - 49n = 7(2m - 7n)\) is a multiple of 7 as \(2m - 7n\) is an integer. Hence \(7 \mid 1\). By the above lemma we get

\[|7| \leq |1|,

which is a contradiction. \(\blacksquare\)
The same argument implies.

Lemma. Suppose a and b are two integers.

If a and b have a common divisor d greater than 1, then the equation $ax + by = 1$ has no integer solutions.

Draft/Proof.

\[
\begin{array}{c|c|c}
\text{Given} & \Rightarrow & \text{Goal} \\
\hline
\text{d | a, d | b, d > 1} & \Rightarrow & ax + by = 1 \\
x, y : \text{integer} & & \\
\end{array}
\]

Proof by contradiction

\[
\begin{array}{c|c|c}
\text{Given} & \Rightarrow & \text{Goal} \\
\hline
\text{d | a, d | b, d > 1,} & \Rightarrow & \text{Contradiction} \\
x, y : \text{integer} & & \\
ax + by = 1 & & \\
\end{array}
\]

\[
d \mid a \Rightarrow \text{for some integer } a' \Rightarrow ax + by = da'x + db'y \\
a = da' \\
d \mid b \Rightarrow \text{for some integer } b' \\
b = db' \\
\Rightarrow d \mid ax + by = 1 \\
\text{by lemma} \Rightarrow |d| \leq 1, \\
\text{which is a contradiction.} \blacksquare
\]
In fact, the converse of this lemma is also correct, but it is harder to prove. We will do it later in this course.

Converse of \(P \implies Q \) is \(Q \implies P \). In general \(P \implies Q \) might be true and at the same time \(Q \implies P \) be false.

\[\text{Biconditional Proposition } \quad P \iff Q = (P \implies Q) \land (Q \implies P). \]

\(P \) if and only if \(Q \).

\(P \) is necessary and sufficient for \(Q \).

\(P \iff Q \) is true exactly when \(P \) and \(Q \) have the same truth value.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \implies Q)</th>
<th>(Q \implies P)</th>
<th>(P \iff Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
</tbody>
</table>

Definition. Let \(n \) be an integer. We say \(n \) is even if \(2 \mid n \).

We say \(n \) is odd if \(n \) is NOT even.

Important remark. Since the above conditional proposition is defining a phrase, it gets promoted to a biconditional proposition.