René Descartes used coordinates to study geometry. Nowadays we use the idea of _n-tuples_ in many aspects of our life:

Ex. List of courses: it has various columns: name, number, location, ...

List of movies in netflix: genre, title, length, rating, etc.

Definition. Given sets \(X \) and \(Y \), the **Cartesian product** of \(X \) and \(Y \), denoted by \(X \times Y \), is the set

\[
X \times Y = \{ (x, y) \mid x \in X, y \in Y \},
\]

where \((x, y) \) is an ordered pair, i.e. \((x_1, y_1) = (x_2, y_2) \) exactly when \(x_1 = x_2 \) and \(y_1 = y_2 \).

Similarly we define \(X_1 \times X_2 \times \cdots \times X_n = \{ (x_1, \ldots, x_n) \mid x_i \in X_i \text{ for } 1 \leq i \leq n \} \), and \((x_1, \ldots, x_n) = (x_1', \ldots, x_n') \) if and only if \(x_i = x_i' \) for \(1 \leq i \leq n \).

Ex. Let \(A = \{1, 2\} \) and \(B = \{a, b\} \). List elements of \(A \times B \), and \(B \times A \).

Solution. \(A \times B = \{ (1, a), (1, b), (2, a), (2, b) \} \)

\(B \times A = \{ (a, 1), (a, 2), (b, 1), (b, 2) \} \)
Lecture 17: Cartesian product

Monday, October 31, 2016 1:48 PM

We pair each element of A by all the elements of B.

In the above example, you can see that $(A \times B) \cap (B \times A) = \emptyset$.

Ex. Let $A = \{1, 2\}$ and $B = \{1, 3, 4\}$. Find $(A \times B) \cap (B \times A)$.

Solution

$A \times B = \{(1, 1), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4)\}$

$B \times A = \{(1, 1), (1, 2), (3, 1), (3, 2), (4, 1), (4, 2)\}$

$(A \times B) \cap (B \times A) = \{(1, 1)\}$.

Lemma. $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.

Proof. $(x,y) \in (A \times B) \cap (C \times D) \iff (x,y) \in A \times B \land (x,y) \in C \times D$

\[\iff x \in A \land y \in B \land x \in C \land y \in D \]

\[\iff (x \in A \land x \in C) \land (y \in B \land y \in D) \]

\[\iff x \in A \cap C \land y \in B \cap D \]

\[\iff (x,y) \in (A \cap C) \times (B \cap D) \]

Warning. $(A \times B) \cup (C \times D)$ is not necessarily equal to $(A \cup C) \times (B \cup D)$. (why?)
Based on your intuition of cardinality of finite sets, you can see that $|A \times B| = |A| \cdot |B|$ if A and B are finite sets.

Ex. In the following pictures in how many ways can we go from X to Z by passing Y only once.

Solution. We can "label" each path with an element of $\mathbb{S}1,2,3 \times \mathbb{S}a,b$. And any element of $\mathbb{S}1,2,3 \times \mathbb{S}a,b$ is a label of a path. So there is a "matching" (the technical term is bijection as we will learn later) between the possible paths and elements of $\mathbb{S}1,2,3 \times \mathbb{S}a,b$.

So there are 6 possible paths. ■

The key point in the above example is the following:

We often count objects by finding a bijection between them and a more familiar set. A set whose cardinality is already known.
“Definition” A function carries three pieces of information:

. Two sets: one is called domain and the other is called codomain.

. A rule: assigns a unique element of codomain to each element of domain

We either write \(f: X \rightarrow Y \) and then specify its rule, or

\[
\begin{align*}
X & \rightarrow Y \\
\ast & \mapsto f(x)
\end{align*}
\]

. You have worked with a lot of functions in calculus, but in an inaccurate way. In the following examples we will see some of these inaccuracies.

Ex. Is the following a function?

\[f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x) = \frac{1}{x}. \]

Answer. No, \(f \) is NOT defined at \(0 \).

By changing its domain, we can address this issue:

\[f: \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}, \quad f(x) = \frac{1}{x} \quad \text{is a function.} \]
Ex. Is the following a function?

\[f: \mathbb{R} \rightarrow \mathbb{R}^+, \quad f(x) = x^2. \]

Answer. No, it is NOT. It assigns 0 to 0 which does not belong to the codomain \(\mathbb{R}^+ \).

By changing the codomain we can address this issue:

\[f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x) = x^2 \text{ is a function.} \]

Ex. Is the following a function?

\[f: \mathbb{R}^+ \rightarrow \mathbb{R}, \quad f(x) = y \text{ if } y^2 = x. \]

Answer. No, it is NOT. This rule does NOT assign a unique element of codomain to, let’s say, 1. We have \((\pm 1)^2 = 1\).

Changing the codomain can resolve this issue:

\((f: \mathbb{R}^+ \rightarrow \mathbb{R}^+, \quad f(x) = y \text{ if } y^2 = x) \) is a function.

In fact, in this case, \(f: \mathbb{R}^+ \rightarrow \mathbb{R}^+, \quad f(x) = \sqrt{x} \).

Composition of functions Let \(X \xrightarrow{f} Y \) and \(Y \xrightarrow{g} Z \) be two functions; suppose codomain of \(f \) is equal to the domain...
of \(g \). Then we can form a new function called the composition of \(f \) and \(g \), denoted by \(g \circ f \).

Domain of \(g \circ f = \text{Domain of } f \)

Codomain of \(g \circ f = \text{codomain of } g \)

Rule of \(g \circ f : \ x \mapsto g(f(x)) \).

Ex. Let \(f : \mathbb{R}\setminus\{0\} \to \mathbb{R}, \ f(x) = \frac{1}{x} \). Find \(f \circ f \).

Answer. It does **not** make sense to talk about \(f \circ f \). A codomain of \(f \) is not equal to the domain of \(f \). This issue can be resolved by changing the codomain of \(f \).

Let \(f : \mathbb{R}\setminus\{0\} \to \mathbb{R}\setminus\{0\}, \ f(x) = \frac{1}{x} \). Then

\[
(f \circ f)(x) = f(f(x)) = \frac{1}{f(x)} = \frac{1}{\frac{1}{x}} = x.
\]

Remark. \(f \circ f \) is not equal to \(I : \mathbb{R} \to \mathbb{R}, \ I(x) = x \) as they have different (co)domains.