In the previous lecture we defined an invertible function:

We say \(X \xrightarrow{f} Y \) is invertible if

1. it has a left inverse: \(\exists \ Y \xrightarrow{g} X, \ g \circ f = I_X \)
2. it has a right inverse: \(\exists \ Y \xrightarrow{h} X, \ f \circ h = I_Y \)

Theorem. Suppose \(X \xrightarrow{f} Y \) is a function.

\(f \) is invertible if and only if \(f \) is bijective.

We start by proving two lemmas:

Lemma 1. Suppose \(X \xrightarrow{f} Y \) is a function.

\(f \) has a left inverse if and only if \(f \) is injective.

Proof. \((\Rightarrow)\) \(\exists \ Y \xrightarrow{g} X, \ g \circ f = I_X \) which is injective.

Hence, by a theorem that we proved in the previous lecture, \(f \) is injective.

\((\Leftarrow)\) Suppose \(X \xrightarrow{f} Y \) is injective. We would like to define a function \(Y \xrightarrow{g} X \) such that \(g \circ f = I_X \), which means, for any \(x \in X \), \(g(f(x)) = x \).
Lecture 21: Injection and having a left inverse

This means g should undo f on the image of f and can be anything outside of $\text{Im}(f)$.

Here is a formal definition:

Choose $x_0 \in X$ (we can do that since $X \neq \emptyset$). Define $Y \xrightarrow{g} X$ as follows:

$$g(y) = \begin{cases} x & \text{if } y = f(x) \text{ for some } x \in X \\ x_0 & \text{if } y \in Y \setminus \text{Im}(f) \end{cases}$$

We need to show g is a function (we say g is well-defined).

[Recall that to show "an assigning rule" defines a function from X to Y, we have to check three things:

1. This "rule" can be applied to all the elements of X.

2. This "rule" assigns elements of Y to any element of X.

3. This "rule" assigns a unique element of Y to any element of X.

For instance, we have seen that $f: \mathbb{R}^+ \rightarrow \mathbb{R}$, $f(x) = y$ if $y^2 = x$ does NOT define a function. This rule assigns two elements of \mathbb{R} to 1. Both 1 and -1 are assigned to 1.]
And then we have to check that $g_f^* = I_X$.
well-definedness of g. It clearly assigns elements of Y to any element of X. We have to check why it assigns a unique element:

1. If $y \in Y \setminus \text{Im}(f)$, then x_0 is assigned to y with no ambiguity.
2. Suppose $y \in \text{Im}(f)$, and x_1 and x_2 can be assigned to y. So $f(x_1) = y \land f(x_2) = y$, which implies $f(x_1) = f(x_2)$. Since f is injective and $f(x_1) = f(x_2)$, we get that $x_1 = x_2$. So a unique element of X is assigned to y.

Checking $g \circ f = I_X$.

Both $g \circ f$ and I_X are functions from X to X. So we have to check only that $(g \circ f)(x) = I_X(x)$ for any $x \in X$.

$$(g \circ f)(x) = g(f(x)) = g(y) \quad \text{where } y = f(x)$$

$$= x \quad \text{the way we defined } g.$$

$$= I_X(x).$$

$$\blacksquare$$
Lemma. Suppose \(f : X \rightarrow Y \) is a function.

\(f \) has a right inverse if and only if \(f \) is surjective.

In the proof we will be using an axiom of set theory called **axiom of choice**. First proof will be written and then it will be mentioned where axiom of choice is used.

Proof. \((\rightarrow)\) \(\exists h : Y \rightarrow X \), \(f \circ h = I_Y \). Since \(I_Y \) is surjective, \(f \) is surjective. (In the previous lecture we have proved that \(f \circ f \) is surjective implies that \(f \) is surjective.)

\((\leftarrow)\) we assume \(f \) is surjective. And we have to find \(h : Y \rightarrow X \) such that \((f \circ h)(y) = y \). So \(h \) should be defined in a way such that \(f(h(y)) = y \).

For any \(y \in Y \), let \(f(y) = \{ x \in X \mid f(x) = y \} \) be the preimage of \(y \). Since \(f \) is surjective, \(f(y) \neq \emptyset \) for any \(y \in Y \).

Let's choose one element of \(f(y) \) and call it \(h(y) \). So we get a function \(h : Y \rightarrow X \) such that \(h(y) \in f(y) \).
So \(f(h(y)) = y \). Hence \(f \circ h = I_Y \) as both of these functions are from \(Y \) to \(Y \) and \((f \circ h)(y) = f(h(y)) = y = I_Y(y) \).

(Almost)

For a single non-empty set \(Z \), we can get \(z \in Z \). But to do it simultaneously for a family of non-empty sets, one needs **axiom of choice**:

Suppose \(F: Y \to P(X) \) be a function such that

\[
\forall y \in Y, \; F(y) \neq \emptyset.
\]

Then there is a function \(h: Y \to X \) such that

\[
\forall y \in Y, \; h(y) \in F(y).
\]

Using the axiom of choice for \(F: Y \to P(X) \), \(F(y) = \{f(y)\} \)

we get the desired \(h: Y \to X \).
Proof of Theorem. (f is invertible \iff f is bijective.)

f is invertible \iff f has a left inverse \iff f is injective
(by Lemma 1).

f has a right inverse \iff f is surjective
(by Lemma 2).

f is injective and surjective \iff f is bijective.

(\Leftarrow) f is bijective \implies f is injective and surjective

f is injective \iff f has a left inverse \iff f is invertible
(by Lemma 1).

f is surjective \iff f has a right inverse
(by Lemma 2).