Let’s recall the definitions of prime and irreducible integers:

Definition. 1) \(n \in \mathbb{Z}^* \) is called irreducible if
\[
\forall a, b \in \mathbb{Z}, \quad n = ab \implies (n = |a| \text{ or } n = |b|).
\]

2) \(p \in \mathbb{Z}^* \) is called prime if
\[
\forall a, b \in \mathbb{Z}, \quad p \mid ab \implies (p \mid a \text{ or } p \mid b).
\]

Recall that \(n \in \mathbb{Z}^* \) is irreducible if and only if the only positive divisors of \(n \) are 1 and \(n \).

Theorem. \(\forall n \in \mathbb{Z}^* \), \(n \) is irreducible \(\iff \) \(n \) is prime.

An alternative way to formulate the above theorem is

Suppose \(n \in \mathbb{Z}^* \). \(n \) has only two positive divisors
if and only if the following holds \(n \mid ab \implies n \mid a \text{ or } n \mid b \).

(\(\implies \)) side of the above statement is called Euclid’s lemma.

Proof of Theorem. (\(\implies \)) We assume \(n \) is irreducible, and we have to prove \(n \mid ab \implies (n \mid a \vee n \mid b) \). It is enough to prove
\[
(n \mid ab \land n \nmid a) \implies n \nmid b.
\]
\[\gcd(a,n) \mid a \implies \gcd(a,n) \neq n \implies \gcd(a,n) = 1. \]
\[n \nmid a \quad \text{the only positive divisors of } n \quad \text{are 1 and } n \]
\[n \mid ab \implies n \mid b \] by Corollary 2.
\[\gcd(n,a)=1 \]
\[\iff n=ab. \text{ Since } n \neq 0, a \neq 0 \text{ and } b \neq 0; \text{ and } n \mid ab. \]
Since \(n \) is prime, \(n \mid a \) or \(n \mid b \).

Case 1. \(n \mid a \).

In this case, as \(a \neq 0 \), we have \(n \leq |a| \). So \(|a| |b| \leq |a| \).
Thus \(|b| \leq 1 \). Hence \(|b| = 1 \), which implies \(n = |a| \).

Case 2. \(n \mid b \).

By a similar argument, as in **Case 1**, we get \(n = |a| \).

This theorem is the key result in proving any integer \(> 1 \) can be written as a product of primes in a unique way. You will see this either in your algebra series or in your number theory series. We say \(\mathbb{Z} \) is a unique factorization domain (UFD).
We’d like to solve congruence equations.

Q Find all the solutions of $ax \equiv b \pmod{n}$. Does it have a solution?

Ex. For $n=2$ and $b=1$; there are two cases:

- If $a \equiv 0$, then, for any $x \in \mathbb{Z}$, $ax \equiv 0 \not\equiv 1$. So $ax \equiv 1$ has no solution.

- If $a \equiv 1$, then any odd x is a solution of $x^2 \equiv 1$.

Ex. For $n=3$ and $b=1$; there are three cases:

- If $a \equiv 0$, 1, or 2.

As above $a^3 \equiv 0$ has no solution, and any integer of the form $3k+1$ is a solution of $x^3 \equiv 1$.

How about $a \equiv 2$? In rational numbers we write:

$$2x = 1 \Rightarrow \left(\frac{1}{2}\right)2x = \frac{1}{2} \Rightarrow x = \frac{1}{2}.$$

But here we are looking for integers x such that $2x \equiv 1$.

-
As in the rational case we look for an "inverse" of $2 \mod 3$.

Modulo 3 any number is congruent to 0, 1, or 2. So we can look for an inverse among these numbers:

\[
\begin{array}{c|ccc}
\times & 0 & 1 & 2 \\
\hline
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 \\
2 & 0 & 2 & 1 \\
\end{array}
\]

Table of multiplication mod 3.

So 2 is an inverse of 2 mod 3. Hence

\[
2 \cdot 3 \equiv 1 \implies (2) (2x) \equiv (2)(1)
\]

\[
\implies x \equiv 2.
\]

So x is a solution if and only if x is of the form $3k+2$.

Ex. For $n=4, b=1$; there are four cases: $a \equiv 0, 1, 2, 3$. As before we can handle the cases of $a \equiv 0$ and 1.

Does $2x \equiv 1$ have a solution? (Since $2x-1$ is odd, $4+2x-1$; and so it does NOT have a solution.)

Next we will prove two lemmas that give alternative arguments...
for this case.

Lemma. For any $n \in \mathbb{Z}^+$, $a \equiv b \mod n \Rightarrow \gcd(a, n) = \gcd(b, n)$.

Proof. Let $d_1 = \gcd(a, n)$ and $d_2 = \gcd(b, n)$. To show $d_1 = d_2$, it is enough to show $d_1 | d_2$ and $d_2 | d_1$ (notice that $d_i \geq 1$).

By symmetry, it is enough to show $d_1 | d_2$.

$a \equiv b \mod n \Rightarrow \exists k \in \mathbb{Z}, b = nk + a$.

$d_1 | n \Rightarrow d_1 | nk + a$. So $d_1 | b$ and $d_1 | n$.

$d_1 | b \Rightarrow d_1 | \gcd(b, n) \Rightarrow d_1 | d_2$.

In the next lecture, we will use this lemma to prove Euclid's algorithm for finding \gcd of two integers.

Lemma. If $ax \equiv b \mod n$ has a solution, then $\gcd(a, n) | b$.

(We have already proved this lemma, when we discussed
Lecture 28: Linear equations in congruence arithmetic

linear Diophantine equations.

Proof of lemma. For some integer x, we have $ax \equiv b \pmod{n}$.

So, by the previous lemma, $\gcd(ax, n) = \gcd(b, n)$.

Let $d = \gcd(a, n)$. Then $d \mid a \iff d \mid ax \iff d \mid \gcd(ax, n)$.

Hence $d \mid \gcd(b, n)$. On the other hand $\gcd(b, n) \mid b$.

Therefore $d \mid b$, which means $\gcd(a, n) \mid b$.

In the next lecture we will prove the converse.