Lecture 15: The god of two integers

In the previous lecture, we mentioned the following theorem.
Theorem. Suppose $a, b \in \mathbb{Z}$ and at least one of them is not zero. Then there exist $r, s \in \mathbb{Z}$ such that $a r+b s=\operatorname{gcd}(a, b)$.

We start with the following lemma which we have essentially proved in the previous lecture.

Lemma. Suppose $a, b \in \mathbb{Z}, d l a$, and $d l b$. Then, for every $x, y \in \mathbb{Z}$,

$$
d / a x+b y .
$$

In particular, gcd(a,b) |ax+by for every $x, y \in \mathbb{Z}$.
Proof. $\left.\begin{array}{rl}d l a & \Rightarrow a \stackrel{d}{=} 0 \\ d \mid b & \Rightarrow b \stackrel{d}{\equiv} 0\end{array}\right\} \Rightarrow a x+b y \stackrel{d}{\equiv}(0)(x)+(0)(y) \stackrel{d}{=} 0 \Rightarrow d l a x+b y$.
(Alternatively, $\left.\begin{array}{rl}\quad d \mid a & \Rightarrow a=d k \text { for some } k \in \mathbb{Z} \\ d \mid b & \Rightarrow b=d l \text { for some } l \in \mathbb{Z}\end{array}\right\} \Rightarrow$

$$
a x+b y=d k x+d \ell y=d\left({ }_{\underset{\text { in }}{ } \mathbf{Z}}^{(l)} \Rightarrow d \operatorname{lax}+b y .\right)
$$

Since $\operatorname{gcd}(a, b) \mid a$ and $\operatorname{gcd}(a, b)|b, \operatorname{gcd}(a, b)| a x+$ by for every $x, y \in \mathbb{Z}$. By the previous lemma, every positive integer of the form $a x+b y$ is at least $\operatorname{gcd}(a, b)$. We will show that the smallest positive integer of the

Lecture 15: The god and integer linear combination Monday, November 28, 2016 6:33 PM
form $a x+b y$ is $\operatorname{gcd}(a, b)$. Before we go to the proof of the previous theorem, let's recall the well-ordering principle.

If S is a non-empty subset of \mathbb{Z}^{+}, then S has a minimum.
Proof of Theorem. Let $S=\left\{n \in \mathbb{Z}^{+} \mid \exists x, y \in \mathbb{Z}, n=a x+b y\right\}$.
By the assumption, either $a \neq 0$ or $b \neq 0$. Without loss of generality, we can and will assume that $a \neq 0$. Then $|a|>0$. Notice that

$$
|a|=a \operatorname{sgn}(a)+b(0)>0 \text { where } \operatorname{sgn}(a)=\left\{\begin{array}{cl}
1 & \text { if } a>0 \\
0 & \text { if } a=0 \\
-1 & \text { if } a<0
\end{array}\right. \text {. }
$$

Hence, $|a| \in S ;$ in particular, $S \neq \varnothing$. Hence by the well-ordering principle, S has the minimum. Let m be the minimum of S. We want to show that m is $\operatorname{gcd}(a, b)$. Notice that, since $m \in S$, $m=a x+b y$ for some $x, y \in \mathbb{Z}$. Hence, by the previous lemma, $\operatorname{gcd}(a, b) \mid m$. Therefore $|\operatorname{gcd}(a, b)| \leq|m|$, and so $\operatorname{gcd}(a, b) \leq m$ as $\operatorname{gcd}(a, b)$ and m are positive.

Next we want to show that $m \leq \operatorname{gcd}(a, b)$. To this end, we prove that m is a common divisor of a and b, which implies that $m \leq g c d a, b)$.

Lecture 15: ged and integer linear combination

By symmetry it is enough to show m / a. (By symmetry, we mean that by a similar argument we can get $m \mid b$.)

To prove ma, we will prove that the remainder of a divided by m is 0 . Let r be the remainder of a divided by m. Hence, there exists $q \in \mathbb{Z}$, such that

$$
\begin{equation*}
a=m q+r \quad \text { and } \quad 0 \leq r<m \tag{I}
\end{equation*}
$$

Therefore $\quad r=a-m q=a-(a x+b y) q$

$$
\begin{equation*}
\Rightarrow r=a(1-x q)-b \underbrace{(y q)}_{\text {in } \mathbf{Z}} \tag{III}
\end{equation*}
$$

Suppose to the contrary that $m \neq a$. Then $r \neq 0$.
By (II) and (III), $r>0$, and so by (II), $r \in S$.
Therefore, r is at least the minimum of S, which means $r \geq m$. This contradicts (I). Hence $m \mid a$. Similarly m / b.

This means m is a common divisor of a and b. Thus m is at most the greatest common divisor of a and b, which means $m \leq \operatorname{gcd}(a, b)$. Therefore, $m=\operatorname{gcd}(a, b)$. Hence $\operatorname{gcd}(a, b)=a x+b y$.

Lecture 15: Some properties of gad
Thursday, December 1, 2016 9:52 PM
Corollary. Suppose $\operatorname{gcd}(a, b)=d$. Then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
Proof. $\operatorname{gcd}(a, b)=d \Rightarrow$ there exist $r, s \in \mathbb{Z}, \quad a r+b s=d$.

$$
\Rightarrow \underset{\text { in } \mathbb{Z}}{\left(\frac{a}{d}\right)} r+\underset{\text { in } \mathbb{Z}}{\left(\frac{b}{d}\right)} s=1
$$

By a lemma, $\left.\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right) \right\rvert\,\left(\frac{a}{d}\right) r+\left(\frac{b}{d}\right) s$, and so $\left.\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right) \right\rvert\, 1$. Hence $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.

Euclid's lemma (general version)
Suppose a is a non-zero integer, $b, c \in \mathbb{Z}$. Then

$$
\left.\begin{array}{l}
a \mid b c \\
\operatorname{gcd}(a, b)=1
\end{array}\right\} \Rightarrow a \mid c
$$

Proof. By the previous theorem, there exist $r, s \in \mathbb{Z}$, $r a+s b=1$. Therefore $r a c+s b c=c$.

$$
\left.\begin{array}{l}
a \mid a \\
a \mid b c
\end{array}\right\} \Rightarrow a \mid(r c) a+(s) b c=c
$$

Euclid was interested in this lemma in order to prove that integers can be written as a product of irreducibles in a unique way. Let's

Lecture 15: Prime and irreducible
recall the definitions of prime and irreducible integers:
Definition. (1) $p \in \mathbb{Z}$ is called irreducible if $p \neq 0, p \neq \neq 1$,
$\forall a, b \in \mathbb{Z}, \quad p=a b \Rightarrow(|a|=1$ or $|b|=1)$.
(2) $p \in \mathbb{Z}$ is called prime if $p \neq 0, p \neq \pm 1$,
$\forall a, b \in \mathbb{Z}, \quad p \mid a b \Rightarrow(p \mid a$ or $p \mid b)$.
Lemma. Suppose $p \in \mathbb{Z}$ is irreducible, and d is a positive divisor of p. Then d is either 1 or $|p|$. In particular, for every $a \in \mathbb{Z}$, $\operatorname{gcol}(a, p)$ is either 1 or $|p|$.

Proof. d / p implies $p=d k$ for some $k \in \mathbb{Z}$. Since p is irreducible, either $|d|=1$ or $|k|=1$. So either $d=1$ or $d=|p|$ as $d>0$.

For every $a \in \mathbb{Z}, \operatorname{gcd}(a, p)$ is a positive divisor of p, and so it is either 1 or $|\mathbb{P}|$.

Euclid's lemma (special case) p :irreducible $\Rightarrow p:$ prime.
This means, if p is irreducible, then, for every $a, b \in \mathbb{Z}$,

$$
p \mid a b \Rightarrow(p \mid a \text { or } p \mid b)
$$

Lecture 15: Prime and irreducible

Recall that $P \Rightarrow(Q \vee R) \equiv(P \wedge \neg Q) \Rightarrow R$, so we prove that

$$
(p \mid a b \wedge p \nmid a) \Rightarrow p \mid b .
$$

Proof. Since p is irreducible, by the previous lemma, $\operatorname{god}(a, p)$ is either 1 or $|p|$. Because $p \nmid a, \operatorname{gcd}(a, p) \neq|p|$. Hence $\operatorname{gcd}(a, p)=1$.

$$
p|a b| q \operatorname{god}(p, a)=1\} \underset{\substack{\text { (general } \\ \text { version) }}}{\text { Euclid's }} p \mid b .
$$

In one of your HW assignments, you proved the converse: prime \Rightarrow irred. You will use these ideas to study Euclidean domains and SIDs in the algebra series.

This theorem is the key result in proving every integer >1 can be written as a product of primes in a unique way. You will see this either in your algebra series or in your number theory series We say \mathbb{Z} is a unique factorization domain (UFD).

Lecture 15: Equations in congruence arithmetic
Wed like to solve congruence equations:
(Q) Find all the solutions of $a x \equiv b(\bmod n)$. Does it have a solution?

Ex. For $n=2$ and $b=1$; there are two cases: $a \stackrel{2}{\equiv} 0$ or $a^{2} \equiv 1$.

If $a \stackrel{2}{\equiv} 0$, then, for every $x \in \mathbb{Z}, a x \stackrel{2}{\equiv} 0^{2} \not \equiv 1$. So $a x \stackrel{2}{\equiv} 1$ has no solution.
. If $a \stackrel{2}{\equiv} 1$, then every odd x is a solution of $x \cong 1$.
Ex. For $n=3$ and $b=1$; there are three cases:

$$
a \stackrel{3}{\equiv} 0,1 \text {,or } 2
$$

- As above $a \stackrel{3}{=} 0$ has no solution, and every integer of the form $3 k+1$ is a solution of $x \frac{3}{\equiv} 1$.
- How about $a \stackrel{3}{=} 2$? In rational numbers we write:

$$
2 x=1 \Rightarrow\left(\frac{1}{2}\right) 2 x=\frac{1}{2} \Rightarrow x=\frac{1}{2}
$$

But here we are looking for integers x such that $2 x^{3} \equiv 1$.

Lecture 15: Equations in congruence arithmetic

As in the rational case we look for an "inverse" of $2 \bmod 3$. Modulo 3 every number is congruent to 0,1, or 2 . So we can look for an inverse among these numbers:

\cdot	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Table of multiplication $\bmod 3$.

So 2 is an inverse of $2 \bmod 3$. Hence

$$
\begin{aligned}
2 x \equiv \frac{3}{\equiv} 1 & \Longrightarrow(2)(2 x) \stackrel{3}{\equiv}(2)(1) \\
& \Rightarrow \quad x \equiv \frac{3}{\equiv} 2 .
\end{aligned}
$$

So x is a solution if and only if x is of the form $3 k+2$. Ex. For $n=4, b=1$; there are four cases: $a^{4}=0,1,2,3$. As before we can handle the cases of $a \underline{=} 0$ and 1 .

Does $2 x \stackrel{4}{=} 1$ have a solution? (Since $2 x-1$ is odd, $4 \nmid 2 x-1$; and so it does NOT have a solution.)

Lecture 15: Equations in Congruences
Theorem. Suppose $n \in \mathbb{Z}^{\geq 1}$ and $a \in \mathbb{Z}$. Then

$$
a x \equiv 1 \quad(\bmod n)
$$

has a solution if and only if $\operatorname{gcd}(a, n)=1$.
Proof. (\Rightarrow) Suppose, for some $x \in \mathbb{Z}, a x \stackrel{n}{\equiv} 1$. Then $n \mid a x-1$, which means there exists $y \in \mathbb{Z}$ such that $n y=a x-1$. Hence, $a x-n y=1$. Because $\operatorname{gcd}(a, n) \mid a x-n y$, we obtain that $\operatorname{gcd}(a, n)$, and so $\operatorname{god}(a, n)=1$.
$\Leftrightarrow \operatorname{gcd}(a, n)=1$ implies there exist $r, s \in \mathbb{Z}$ such that

$$
a r+n s=1
$$

Then $n \mid a r-1$, and so $x=r$ is a solution of $a x \cong 1$.
Proposition. If $\operatorname{god}(a, n)=1$, then $a x \xlongequal{\equiv} 1$ has a unique solution modulo n.

Proof. We have already proved the existence of a solution. Now suppose x_{1} and x_{2} are solutions of $a x \stackrel{n}{\equiv} 1$. We have to show $x_{1} \xlongequal{n} x_{2}$. $a x_{1} \xlongequal{n} 1$ and $a x_{2} \xlongequal{n} 1$ imply $a x_{1} \xlongequal{n} a x_{2}$. Hence $a\left(x_{1}-x_{2}\right) \xlongequal{\underline{n}} 0$.

Lecture 15: Equations in congruences
Friday, December 2, 2016 12:26 AM

$$
\left.\begin{array}{c}
n \mid a\left(x_{1}-x_{2}\right) \\
\operatorname{gcd}(a, n)=1
\end{array}\right\} \underset{\substack{\text { Endid's } \\
\text { lemma (general version) }}}{\Longrightarrow} n \mid x_{1}-x_{2} \Rightarrow x_{1} \stackrel{n}{\equiv} x_{2} .
$$

Def. We say $a^{\prime} \in \mathbb{Z}$ is called a multiplicative inverse of a modulo n if $a a^{\prime} \stackrel{n}{\equiv} 1$.

Similar to solving a linear equation over Q where inverse of a helps us solve $a x=b$, a multiplicative inverse of a modulo n helps us solve $a x \stackrel{n}{\equiv} b$.

Theorem. Suppose $\operatorname{gcd}(a, n)=1$, and $b \in \mathbb{Z}$. Then $a x \xlongequal{\underline{n}} b$ has a solution, and its solution is unique modulo n.

Proof. Since $\operatorname{gcd}(a, n)=1$, a has a multiplicative inverse a^{\prime} modulo
n. This means $a a^{\prime} \xlongequal{n} 1$. Hence $a\left(a^{\prime} b\right)^{n} \equiv b$, and so $x=d b$ is a solution of $a x \stackrel{n}{\equiv} b$. Next we prove the uniqueness of the solution modulo n. Suppose x_{1} and x_{2} are two solutions. Hence $a x_{1} \xlongequal{n} b$ and $a x_{2} \stackrel{n}{\equiv} b$. Therefore, $a x_{1} \xlongequal{n} a x_{2}$. Thus $a\left(x_{1}-x_{2}\right) \xlongequal{n} 0$. $\left.\begin{array}{l}n \mid a\left(x_{1}-x_{2}\right) \\ \operatorname{gcd}(a, n)=1\end{array}\right\} \underset{\substack{\text { Endid's } \\ \text { lemma (general version) })}}{ } n \mid x_{1}-x_{2} \Rightarrow x_{1} \xlongequal{n} x_{2}$.

