M109 HW2 Solutions

1

Prove that $\forall n, 2 \mid n(n+1)$.
Proof. The idea is that one of the numbers $n, n+1$ is definitely even, so their product has to be even.
Rigorously: by definition, we have to show that $n(n+1)$ equals $2 k$ for some integer k. We perform a case analysis: n is either even or odd.

In the first case, $n=2 m$ for some m. Then $n(n+1)=2 m(2 m+1)$ and we set $k:=m(2 m+1)$.
In the second case, $n=2 m+1$ for some m. Then $n(n+1)=(2 m+1)(2 m+2)=2 \cdot(m+1)(2 m+1)$, and we set $k:=(m+1)(2 m+1)$.
[We use that even numbers are of the form $2 m$ and odd ones are of the form $2 m+1$. This was shown in the lecture.]

2

Suppose p is prime: $p>1$ and $p|a b \Longrightarrow p| a \vee p \mid b$. Show that $p=a b \Longrightarrow p= \pm a \vee p= \pm b$.
Proof. We have implications $p=a b \Longrightarrow p|a b \Longrightarrow p| a \vee p \mid b$, where the first follows immediately from the definition of divisibility and the second is (part of) the definition of a prime. So, having established $p|a \vee p| b$, we can do case analysis. Assume $p \mid a$. Then by definition, $a=k p$ for some k. Then we have $p=a b=(k p) b$, so $p=p k b$, or $p(k b-1)=0$. It follows that $k b-1=0$, so $k=b= \pm 1$ and from $p=a b$ it then follows that $p= \pm a$. Similarly, the case $p \mid b$ leads to $p= \pm b$.

3

Prove that

$$
d|a, a| b \Longrightarrow d \mid b
$$

for integers a, b, d.
Proof. By definition, $\exists k \in \mathbb{Z}: a=k d ; \exists k^{\prime} \in \mathbb{Z}: b=k^{\prime} a$. Together these two give $b=k^{\prime} a=k^{\prime}(k d)=$ $\left(k k^{\prime}\right) d$, so there exists an integer $m:=k \cdot k^{\prime}$ such that $d=m \cdot d$, which means by definition that $d \mid b$.

4

For integers d, n, m, r, s,

$$
d|m, d| n \Longrightarrow d \mid s n+r m
$$

Proof. We again use the definition: $\exists k: m=d k ; \exists k^{\prime}: m=d k^{\prime}$.
Then we get $s n+r m=s \cdot(d k)+r \cdot\left(d k^{\prime}\right)$. Since we are looking for $k^{\prime \prime}$ such that $s n+r m=k^{\prime \prime} \cdot d$, we should seek to factor d out from the expression we have for $s n+r m$, which we can readily do: $s n+r m=s \cdot(d k)+r \cdot\left(d k^{\prime}\right)=d \cdot\left(s k+r k^{\prime}\right)$. Thus we set $k^{\prime \prime}:=s k+r k^{\prime}$.

5

True or false: $6|a b \Longrightarrow 6| a \vee 6 \mid b$? This is false:
Proof. Let $a:=2, b:=3$. Then $6 \mid a b$ but 6 can not divide a or b. Indeed, it can never be the case that a greater positive number divides a smaller positive one: if $d \mid c$ then $c=k d$ for some $k \geq 1$, so $c=k \cdot d \geq 1 \cdot d=d$.
[Note that by problem 2 we conclude that 6 is not prime.]

6

Prove that $\forall n>0$,
if n has a divisor d such that $1<d<n$, then n has a divisor d^{\prime} such that $1<d^{\prime} \leq \sqrt{n}$.
Proof. Take d whose existence we assume. That it is a divisor by definition means that $n=d \cdot d^{\prime \prime}$ for some integer $d^{\prime \prime}$. Now the idea is that if a product of two numbers is n then one of them is at least \sqrt{n}. Thus we claim that the integer d^{\prime} that we are seeking can be taken to be d or $d^{\prime \prime}$. That is, we claim $(1<d \leq \sqrt{n}) \vee\left(1<d^{\prime \prime} \leq \sqrt{n}\right)$. First, $1<d$ by assumption and $1<d^{\prime \prime}$ because $d<n$. The rest we prove by contradiction. Assume $\neg\left(d \leq \sqrt{n} \vee d^{\prime \prime} \leq \sqrt{n}\right)=\neg(d \leq \sqrt{n}) \wedge \neg\left(d^{\prime \prime} \leq \sqrt{n}\right)=(d>\sqrt{n}) \wedge\left(d^{\prime \prime}>\sqrt{n}\right)$, that is, that both d and $d^{\prime \prime}$ are greater than \sqrt{n}. But then $n=d \cdot d^{\prime \prime}>\sqrt{n} \cdot d^{\prime \prime}>\sqrt{n} \cdot \sqrt{n}=n$ by properties of the ordering $>$. We get $n>n$, which is a contradiction.

7

Prove that for any positive real x, y,

$$
\sqrt{x y} \geq \frac{2}{\frac{1}{x}+\frac{1}{y}}
$$

Proof. We have

$$
\frac{2}{\frac{1}{x}+\frac{1}{y}}=\frac{2 x y}{x+y}
$$

so we need

$$
\sqrt{x y} \geq \frac{2 x y}{x+y}
$$

or equivalently

$$
\begin{gathered}
1 \geq \frac{2 \sqrt{x y}}{x+y} \\
x+y \geq 2 \sqrt{x y} \\
x+y-2 \sqrt{x y} \geq 0 \\
x-2 \sqrt{x} \sqrt{y}+y \geq 0 \\
\sqrt{x}^{2}-2 \sqrt{x} \sqrt{y}+\sqrt{y}^{2} \geq 0 \\
(\sqrt{x}-\sqrt{y})^{2} \geq 0
\end{gathered}
$$

which is of course true.
[This is the "HM-GM"-part of of the chain known as "HM-GM-AM-QM inequalities". Note that in the process we reduced it to the "GM-AM"-part.]

