
M109 HW2 Solutions

1

Prove that ∀n, 2|n(n+ 1).

Proof. The idea is that one of the numbers n, n+1 is definitely even, so their product has to be even.
Rigorously: by definition, we have to show that n(n+1) equals 2k for some integer k. We perform

a case analysis: n is either even or odd.
In the first case, n = 2m for some m. Then n(n+ 1) = 2m(2m+ 1) and we set k := m(2m+ 1).
In the second case, n = 2m+1 for some m. Then n(n+1) = (2m+1)(2m+2) = 2 ·(m+1)(2m+1),

and we set k := (m+ 1)(2m+ 1).
[We use that even numbers are of the form 2m and odd ones are of the form 2m + 1. This was

shown in the lecture.]
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Suppose p is prime: p > 1 and p|ab =⇒ p|a ∨ p|b. Show that p = ab =⇒ p = ±a ∨ p = ±b.

Proof. We have implications p = ab =⇒ p|ab =⇒ p|a∨ p|b, where the first follows immediately from
the definition of divisibility and the second is (part of) the definition of a prime. So, having established
p|a ∨ p|b, we can do case analysis. Assume p|a. Then by definition, a = kp for some k. Then we have
p = ab = (kp)b, so p = pkb, or p(kb− 1) = 0. It follows that kb− 1 = 0, so k = b = ±1 and from p = ab
it then follows that p = ±a. Similarly, the case p|b leads to p = ±b.
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Prove that
d|a, a|b =⇒ d|b

for integers a, b, d.

Proof. By definition, ∃k ∈ Z : a = kd; ∃k′ ∈ Z : b = k′a. Together these two give b = k′a = k′(kd) =
(kk′)d, so there exists an integer m := k ·k′ such that d = m ·d, which means by definition that d|b.
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For integers d, n,m, r, s,
d|m, d|n =⇒ d|sn+ rm

.

Proof. We again use the definition: ∃k : m = dk; ∃k′ : m = dk′.
Then we get sn+ rm = s · (dk) + r · (dk′). Since we are looking for k′′ such that sn+ rm = k′′ · d,

we should seek to factor d out from the expression we have for sn + rm, which we can readily do:
sn+ rm = s · (dk) + r · (dk′) = d · (sk + rk′). Thus we set k′′ := sk + rk′.
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True or false: 6|ab =⇒ 6|a ∨ 6|b? This is false:

Proof. Let a := 2, b := 3. Then 6|ab but 6 can not divide a or b. Indeed, it can never be the case
that a greater positive number divides a smaller positive one: if d|c then c = kd for some k ≥ 1, so
c = k · d ≥ 1 · d = d.

[Note that by problem 2 we conclude that 6 is not prime.]
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Prove that ∀n > 0,
if n has a divisor d such that 1 < d < n, then n has a divisor d′ such that 1 < d′ ≤

√
n.

Proof. Take d whose existence we assume. That it is a divisor by definition means that n = d · d′′ for
some integer d′′. Now the idea is that if a product of two numbers is n then one of them is at least

√
n.

Thus we claim that the integer d′ that we are seeking can be taken to be d or d′′. That is, we claim
(1 < d ≤

√
n)∨(1 < d′′ ≤

√
n). First, 1 < d by assumption and 1 < d′′ because d < n. The rest we prove

by contradiction. Assume ¬(d ≤
√
n∨d′′ ≤

√
n) = ¬(d ≤

√
n)∧¬(d′′ ≤

√
n) = (d >

√
n)∧ (d′′ >

√
n),

that is, that both d and d′′ are greater than
√
n. But then n = d · d′′ >

√
n · d′′ >

√
n ·

√
n = n by

properties of the ordering >. We get n > n, which is a contradiction.
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Prove that for any positive real x, y,

√
xy ≥ 2

1
x + 1

y

.

Proof. We have
2

1
x + 1

y

=
2xy

x+ y,

so we need

√
xy ≥ 2xy

x+ y,

or equivalently

1 ≥
2
√
xy

x+ y

x+ y ≥ 2
√
xy

x+ y − 2
√
xy ≥ 0

x− 2
√
x
√
y + y ≥ 0

√
x
2 − 2

√
x
√
y +

√
y
2 ≥ 0

(
√
x−√

y)2 ≥ 0,

which is of course true.
[This is the ”HM-GM”-part of of the chain known as ”HM-GM-AM-QM inequalities”. Note that

in the process we reduced it to the ”GM-AM”-part.]
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