M109 HW2 Solutions

1

Prove that $\forall n, 2 | n(n+1)$.

Proof. The idea is that one of the numbers n, n+1 is definitely even, so their product has to be even. Rigorously: by definition, we have to show that n(n+1) equals 2k for some integer k. We perform a case analysis: n is either even or odd.

In the first case, n = 2m for some m. Then n(n+1) = 2m(2m+1) and we set k := m(2m+1). In the second case, n = 2m+1 for some m. Then $n(n+1) = (2m+1)(2m+2) = 2 \cdot (m+1)(2m+1)$,

and we set k := (m+1)(2m+1).

[We use that even numbers are of the form 2m and odd ones are of the form 2m + 1. This was shown in the lecture.]

$\mathbf{2}$

Suppose p is prime: p > 1 and $p|ab \implies p|a \lor p|b$. Show that $p = ab \implies p = \pm a \lor p = \pm b$.

Proof. We have implications $p = ab \implies p|ab \implies p|a \lor p|b$, where the first follows immediately from the definition of divisibility and the second is (part of) the definition of a prime. So, having established $p|a \lor p|b$, we can do case analysis. Assume p|a. Then by definition, a = kp for some k. Then we have p = ab = (kp)b, so p = pkb, or p(kb-1) = 0. It follows that kb-1 = 0, so $k = b = \pm 1$ and from p = ab it then follows that $p = \pm a$. Similarly, the case p|b leads to $p = \pm b$.

3

Prove that

$$d|a,a|b \implies d|b$$

for integers a, b, d.

Proof. By definition, $\exists k \in \mathbb{Z} : a = kd$; $\exists k' \in \mathbb{Z} : b = k'a$. Together these two give b = k'a = k'(kd) = (kk')d, so there exists an integer $m := k \cdot k'$ such that $d = m \cdot d$, which means by definition that d|b. \Box

4

For integers d, n, m, r, s,

$$d|m, d|n \implies d|sn + rm$$

Proof. We again use the definition: $\exists k : m = dk$; $\exists k' : m = dk'$.

Then we get $sn + rm = s \cdot (dk) + r \cdot (dk')$. Since we are looking for k'' such that $sn + rm = k'' \cdot d$, we should seek to factor d out from the expression we have for sn + rm, which we can readily do: $sn + rm = s \cdot (dk) + r \cdot (dk') = d \cdot (sk + rk')$. Thus we set k'' := sk + rk'.

$\mathbf{5}$

True or false: $6|ab \implies 6|a \lor 6|b$? This is false:

Proof. Let a := 2, b := 3. Then 6|ab but 6 can not divide a or b. Indeed, it can never be the case that a greater positive number divides a smaller positive one: if d|c then c = kd for some $k \ge 1$, so $c = k \cdot d \ge 1 \cdot d = d$.

[Note that by problem 2 we conclude that 6 is not prime.]

6

Prove that $\forall n > 0$,

if n has a divisor d such that 1 < d < n, then n has a divisor d' such that $1 < d' \le \sqrt{n}$.

Proof. Take d whose existence we assume. That it is a divisor by definition means that $n = d \cdot d''$ for some integer d''. Now the idea is that if a product of two numbers is n then one of them is at least \sqrt{n} . Thus we claim that the integer d' that we are seeking can be taken to be d or d''. That is, we claim $(1 < d \le \sqrt{n}) \lor (1 < d'' \le \sqrt{n})$. First, 1 < d by assumption and 1 < d'' because d < n. The rest we prove by contradiction. Assume $\neg(d \le \sqrt{n} \lor d'' \le \sqrt{n}) = \neg(d \le \sqrt{n}) \land \neg(d'' \le \sqrt{n}) = (d > \sqrt{n}) \land (d'' > \sqrt{n})$, that is, that both d and d'' are greater than \sqrt{n} . But then $n = d \cdot d'' > \sqrt{n} \cdot d'' > \sqrt{n} \cdot \sqrt{n} = n$ by properties of the ordering >. We get n > n, which is a contradiction.

$\mathbf{7}$

Prove that for any positive real x, y,

$$\sqrt{xy} \ge \frac{2}{\frac{1}{x} + \frac{1}{y}}.$$

Proof. We have

$$\frac{2}{\frac{1}{x} + \frac{1}{y}} = \frac{2xy}{x + y}$$

so we need

$$\sqrt{xy} \ge \frac{2xy}{x+y},$$

or equivalently

$$1 \ge \frac{2\sqrt{xy}}{x+y}$$
$$x+y \ge 2\sqrt{xy}$$
$$x+y-2\sqrt{xy} \ge 0$$
$$x-2\sqrt{x}\sqrt{y}+y \ge 0$$
$$\sqrt{x^2} - 2\sqrt{x}\sqrt{y} + \sqrt{y^2} \ge 0$$
$$(\sqrt{x} - \sqrt{y})^2 \ge 0,$$

which is of course true.

[This is the "HM-GM"-part of the chain known as "HM-GM-AM-QM inequalities". Note that in the process we reduced it to the "GM-AM"-part.]