Math 109 Homework 3 Solutions

File A
4. We proceed by strong induction on n.

Base cases: For $n=34,35,36,37,38$ it is possible to pay with stamps of denominations 5 and 9 as shown in the hint.

Inductive step: Let $n \geq 39$ and assume that it is possible to pay exactly k for any value of k such that $34 \leq k \leq n-1$. We will show that it is possible to pay n. Since $n \geq 39,34 \leq n-5 \leq n-1$, so it is possible to write $n-5=5 x+9 y$ for some nonnegative integers x and y. Adding 5 to both sides gives $n=5(x+1)+9 y$, so it is possible to pay postage of value n.

By strong induction, it is possible to pay any value of postage greater than 34 .

File B

1. (a)

$$
\{A \in P(\{1,2,3,4\}||A| \text { is even }\}=\{\varnothing,\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3,4\}\}
$$

(b)

$$
\{A \in P(\{1,2,3,4\}||A| \text { is odd }\}=\{\{1\},\{2\},\{3\},\{4\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}\}
$$

2. (a) True. The only positive real number whose square is 1 is 1 , so

$$
\left\{x \in \mathbb{R} \mid x>0,\left(x^{2}-1\right)^{2}=0\right\}=\{1\}
$$

so the set in question just has one element written two different ways, and its cardinality is indeed 1.
(b) False. Although $\{\varnothing\}$ is an element of $\{1,\{\varnothing\}\}$, it is not a subset of it. For it to be a subset, the empty set itself would need to be an element of $\{1,\{\varnothing\}\}$, and it is not.
(c) True. The set \mathbb{R} is written in two different ways, so there are two elements.
3. (a) Let X be a set, and let A be an arbitrary subset of X. By the definition of symmetric difference, we have

$$
x \in A \Delta \varnothing \Leftrightarrow((x \in A) \wedge(x \notin \varnothing)) \vee((x \notin A) \wedge(x \in \varnothing))
$$

Since nothing is in the empty set, $x \in \varnothing$ is always false, while $x \notin \varnothing$ is always true. We can therefore simplify the above expression as follows:

$$
((x \in A) \wedge(x \notin \varnothing)) \vee((x \notin A) \wedge(x \in \varnothing)) \Leftrightarrow((x \in A) \wedge \top) \vee((x \notin A) \wedge \perp)
$$

Since for any proposition $P, P \wedge \top \equiv P$ and $P \wedge \perp \equiv \perp$, this simplifies to

$$
((x \in A) \wedge \top) \vee((x \notin A) \wedge \perp) \Leftrightarrow(x \in A) \vee \perp \Leftrightarrow x \in A
$$

Putting this all together gives

$$
x \in A \Delta \varnothing \Leftrightarrow x \in A
$$

as desired.
(b) Let X be a set, and let A be an arbitrary subset of X. By the definition of symmetric difference, we have

$$
x \in A \Delta A \Leftrightarrow((x \in A) \wedge(x \notin A)) \vee((x \notin A) \wedge(x \in A))
$$

Each half of the above disjunction is a contradiction, so this is always false. Since $x \in \varnothing$ is also always false, we have

$$
x \in A \Delta A \Leftrightarrow \perp \Leftrightarrow x \in \varnothing
$$

as desired.
(c) We can apply parts (a) and (b) as well as associativity per the hint to get

$$
\begin{aligned}
A \Delta B=A \Delta C & \Rightarrow A \Delta(A \Delta B)=A \Delta(A \Delta C) \\
& \Rightarrow(A \Delta A) \Delta B=(A \Delta A) \Delta C \\
& \Rightarrow \varnothing \Delta B=\varnothing \Delta C \\
& \Rightarrow B=C
\end{aligned}
$$

4. We proceed via proof by cases:

Case 1. $1 \in A$. Then

$$
A \Delta\{1\}=A \backslash\{1\} \cup\{1\} \backslash A
$$

Since $1 \in A,\{1\} \backslash A$ is the empty set, and we have

$$
A \backslash\{1\} \cup\{1\} \backslash A=A \backslash\{1\} \cup \varnothing=A \backslash\{1\}
$$

Since $1 \in A,|A \backslash\{1\}|=|A|-1$, and $|A|$ is even if and only if $|A|-1$ is odd.

Case 2. $1 \notin A$. Then

$$
A \Delta\{1\}=A \backslash\{1\} \cup\{1\} \backslash A
$$

Since $1 \notin A,\{1\} \backslash A=\{1\}$ and $A \backslash\{1\}=A$, so we have

$$
A \backslash\{1\} \cup\{1\} \backslash A=A \cup\{1\}
$$

Since $1 \notin A,|A \cup\{1\}|=|A|+1$, and $|A|$ is even if and only if $|A|+1$ is odd.
In either case, we have $|A|$ is even if and only if $|A \Delta\{1\}|$ is odd, so we are done by proof by cases.
5. (a) By the definition of $A \subseteq B$ we know $A \subseteq B$ is equivalent to

$$
(x \in A) \Rightarrow(x \in B)
$$

By the definition of $A \cap B$, we know that $A \cap B=A$ is equivalent to

$$
((x \in A) \wedge(x \in B)) \Leftrightarrow(x \in A)
$$

By checking truth tables, we can verify that $P \rightarrow Q \equiv(P \wedge Q) \Leftrightarrow P$. Applying this to $P=x \in A$ and $Q=x \in B$ proves that

$$
A \subseteq B \Leftrightarrow A \cap B=A
$$

(Note there are many ways to show $(x \in A) \Rightarrow(x \in B) \equiv((x \in A) \wedge(x \in B)) \Leftrightarrow(x \in A)$, you do not need to use truth tables)
(b) Let X be a set, and let $A, B, C \subseteq X$. Assume that $A \cap B=A \cap C$ and $A \cup B=A \cup C$. We will show by cases that for all $x \in X, x \in B \Leftrightarrow x \in C$.

Case 1. $x \in A$. Then we have

$$
x \in B \Leftrightarrow(x \in A) \wedge(x \in B) \Leftrightarrow x \in A \cap B \Leftrightarrow x \in A \cap C \Leftrightarrow(x \in A) \wedge(x \in C) \Leftrightarrow x \in C
$$

Case 2. $x \notin A$. Then we have

$$
\begin{aligned}
x \notin B & \Leftrightarrow(x \notin B) \wedge(x \notin A) \\
& \Leftrightarrow \neg((x \in B) \vee(x \in A)) \\
& \Leftrightarrow x \notin(A \cup B) \\
& \Leftrightarrow x \notin(A \cup C) \\
& \Leftrightarrow \neg((x \in C) \vee(x \in A)) \\
& \Leftrightarrow(x \notin C) \wedge(x \notin A) \\
& \Leftrightarrow x \notin C
\end{aligned}
$$

Since the contrapositive is equivalent, we again have

$$
x \in B \Leftrightarrow x \in C
$$

By proof by cases we have

$$
x \in B \Leftrightarrow x \in C
$$

and

$$
B=C
$$

File C

1. (a) $\exists \epsilon>0, \forall \delta>0,(|x-1|<\delta) \wedge\left(\left|x^{2}-1\right|<\epsilon\right)$
(b) $\exists \epsilon>0, \exists x \in \mathbb{R}, \forall n \in \mathbb{Z},|x-n| \geq \epsilon$.
(c) $\exists \epsilon>0, \exists x \in \mathbb{R}, \forall m, n \in \mathbb{Z},|x-m-n \alpha| \geq \epsilon$.
2. (a) Proof: Let $x=-2017$. Let $y \in \mathbb{R}$. Then $y^{2} \geq 0>-1=2016+x$, so the statement holds.
(b) Disproof: Let $x \in \mathbb{R}$. Let $y=(2016+x)^{\frac{1}{3}}$ (note: it is important here that the exponent is $\frac{1}{3}$, to guarantee that this is well defined). Then

$$
y^{3}=2016+x
$$

and it is false that $y^{3}>2016+x$.
(c) Proof: Let $\epsilon>0$, and let N be an integer greater than $\frac{1000}{\epsilon}$. Let $n \geq N$. Then

$$
\frac{1000}{n} \leq \frac{1000}{N}<\frac{1000}{\frac{1000}{\epsilon}}=\epsilon
$$

so the statement holds.

