
Math 109 Homework 3 Solutions

File A

4. We proceed by strong induction on n.

Base cases: For n = 34, 35, 36, 37, 38 it is possible to pay with stamps of denominations 5 and 9 as shown in
the hint.

Inductive step: Let n ≥ 39 and assume that it is possible to pay exactly k for any value of k such that
34 ≤ k ≤ n − 1. We will show that it is possible to pay n. Since n ≥ 39, 34 ≤ n − 5 ≤ n − 1, so it is
possible to write n − 5 = 5x + 9y for some nonnegative integers x and y. Adding 5 to both sides gives
n = 5(x+ 1) + 9y, so it is possible to pay postage of value n.

By strong induction, it is possible to pay any value of postage greater than 34.

File B

1. (a)

{A ∈ P ({1, 2, 3, 4} | |A| is even} = {∅, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}, {1, 2, 3, 4}}

(b)
{A ∈ P ({1, 2, 3, 4} | |A| is odd} = {{1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}

2. (a) True. The only positive real number whose square is 1 is 1, so

{x ∈ R | x > 0, (x2 − 1)2 = 0} = {1}

so the set in question just has one element written two different ways, and its cardinality is indeed 1.

(b) False. Although {∅} is an element of {1, {∅}}, it is not a subset of it. For it to be a subset, the empty
set itself would need to be an element of {1, {∅}}, and it is not.

(c) True. The set R is written in two different ways, so there are two elements.

3. (a) Let X be a set, and let A be an arbitrary subset of X. By the definition of symmetric difference, we
have

x ∈ A∆∅ ⇔ ((x ∈ A) ∧ (x ̸∈ ∅)) ∨ ((x ̸∈ A) ∧ (x ∈ ∅))

Since nothing is in the empty set, x ∈ ∅ is always false, while x ̸∈ ∅ is always true. We can therefore
simplify the above expression as follows:

((x ∈ A) ∧ (x ̸∈ ∅)) ∨ ((x ̸∈ A) ∧ (x ∈ ∅)) ⇔ ((x ∈ A) ∧ ⊤) ∨ ((x ̸∈ A) ∧ ⊥)

Since for any proposition P , P ∧ ⊤ ≡ P and P ∧ ⊥ ≡ ⊥, this simplifies to

((x ∈ A) ∧ ⊤) ∨ ((x ̸∈ A) ∧ ⊥) ⇔ (x ∈ A) ∨ ⊥ ⇔ x ∈ A

Putting this all together gives
x ∈ A∆∅ ⇔ x ∈ A

as desired.
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(b) Let X be a set, and let A be an arbitrary subset of X. By the definition of symmetric difference, we
have

x ∈ A∆A ⇔ ((x ∈ A) ∧ (x ̸∈ A)) ∨ ((x ̸∈ A) ∧ (x ∈ A))

Each half of the above disjunction is a contradiction, so this is always false. Since x ∈ ∅ is also always false,
we have

x ∈ A∆A ⇔ ⊥ ⇔ x ∈ ∅

as desired.

(c) We can apply parts (a) and (b) as well as associativity per the hint to get

A∆B = A∆C ⇒ A∆(A∆B) = A∆(A∆C)

⇒ (A∆A)∆B = (A∆A)∆C

⇒ ∅∆B = ∅∆C

⇒ B = C

4. We proceed via proof by cases:

Case 1. 1 ∈ A. Then
A∆{1} = A \ {1} ∪ {1} \A

Since 1 ∈ A, {1} \A is the empty set, and we have

A \ {1} ∪ {1} \A = A \ {1} ∪∅ = A \ {1}

Since 1 ∈ A, |A \ {1}| = |A| − 1, and |A| is even if and only if |A| − 1 is odd.

Case 2. 1 ̸∈ A. Then
A∆{1} = A \ {1} ∪ {1} \A

Since 1 ̸∈ A, {1} \A = {1} and A \ {1} = A, so we have

A \ {1} ∪ {1} \A = A ∪ {1}

Since 1 ̸∈ A, |A ∪ {1}| = |A|+ 1, and |A| is even if and only if |A|+ 1 is odd.

In either case, we have |A| is even if and only if |A∆{1}| is odd, so we are done by proof by cases.

5. (a) By the definition of A ⊆ B we know A ⊆ B is equivalent to

(x ∈ A) ⇒ (x ∈ B)

By the definition of A ∩B, we know that A ∩B = A is equivalent to

((x ∈ A) ∧ (x ∈ B)) ⇔ (x ∈ A)

By checking truth tables, we can verify that P → Q ≡ (P ∧ Q) ⇔ P . Applying this to P = x ∈ A and
Q = x ∈ B proves that

A ⊆ B ⇔ A ∩B = A

(Note there are many ways to show (x ∈ A) ⇒ (x ∈ B) ≡ ((x ∈ A) ∧ (x ∈ B)) ⇔ (x ∈ A), you do not need
to use truth tables)

(b) Let X be a set, and let A,B,C ⊆ X. Assume that A ∩ B = A ∩ C and A ∪ B = A ∪ C. We will show
by cases that for all x ∈ X, x ∈ B ⇔ x ∈ C.
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Case 1. x ∈ A. Then we have

x ∈ B ⇔ (x ∈ A) ∧ (x ∈ B) ⇔ x ∈ A ∩B ⇔ x ∈ A ∩ C ⇔ (x ∈ A) ∧ (x ∈ C) ⇔ x ∈ C

Case 2. x ̸∈ A. Then we have

x ̸∈ B ⇔ (x ̸∈ B) ∧ (x ̸∈ A)

⇔ ¬((x ∈ B) ∨ (x ∈ A))

⇔ x ̸∈ (A ∪B)

⇔ x ̸∈ (A ∪ C)

⇔ ¬((x ∈ C) ∨ (x ∈ A))

⇔ (x ̸∈ C) ∧ (x ̸∈ A)

⇔ x ̸∈ C

Since the contrapositive is equivalent, we again have

x ∈ B ⇔ x ∈ C

By proof by cases we have
x ∈ B ⇔ x ∈ C

and
B = C

File C

1. (a) ∃ϵ > 0,∀δ > 0, (|x− 1| < δ) ∧ (|x2 − 1| < ϵ)

(b) ∃ϵ > 0,∃x ∈ R,∀n ∈ Z, |x− n| ≥ ϵ.

(c) ∃ϵ > 0,∃x ∈ R,∀m,n ∈ Z, |x−m− nα| ≥ ϵ.

2. (a) Proof: Let x = −2017. Let y ∈ R. Then y2 ≥ 0 > −1 = 2016 + x, so the statement holds.

(b) Disproof: Let x ∈ R. Let y = (2016+x)
1
3 (note: it is important here that the exponent is 1

3 , to guarantee
that this is well defined). Then

y3 = 2016 + x,

and it is false that y3 > 2016 + x.

(c) Proof: Let ϵ > 0, and let N be an integer greater than 1000
ϵ . Let n ≥ N . Then

1000

n
≤ 1000

N
<

1000
1000
ϵ

= ϵ,

so the statement holds.
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