
M109 HW2 Solutions

1 A.3

We want to prove that L1 = L2, equivalently that L1 − L2 = 0. Denote this value by x; now we want
to show (∀ε > 0 : |x| < ε) =⇒ x = 0. We prove the implication by contradiction. Suppose that the
assumption is true but the conclusion is not; that is, suppose (∀ε > 0 : |x| < ε) ∧ x ̸= 0. Since x ̸= 0,
|x| > 0, so using it as ε we get |x| < |x|, which is the desired contradiction.

2 A.4

(a) ∀ε > 0,∃N : ∀n > N : (|xn − a| < ε).
(b) Assume it does exist and denote it by L. We will show that L is then arbitrarily close to both L1 and
L2, which will be absurd. By the definition of a sequential limit, ∃N ′ : ∀n > N ′ : |f(x−

n )−L1| < ε/2. By
the definition of the limit of f , we know that for some d > 0, the implication |x−a| < d =⇒ |f(x)−L| <
ε/2 holds. Since f(x−

n ) −→ a, starting from some N ′′ we have |x−
n − a| < d, and then |f(x−

n )−L| < ε/2
by the implication just mentioned. Then starting from N := max(N ′, N ′′), |f(x−

n ) − L| < ε/2 and
|f(x−

n )−L1| < ε/2. Combining these two together leads to |L−L1| = |(L− f(x−
n ))− (L1 − f(x−

n ))| ≤
|(L − f(x−

n ))| + |(L1 − f(x−
n ))| < ε/2 + ε/2 = ε for any n > N. Then the previous problem implies

L1 = L. Similarly, L2 = L. This contradicts L1 ̸= L2.
[Those attending the 9am discussion will notice that the problem immediately follows from the

Heine definition of the limit.]

3 B.1

By definition, A× (B ∪C) = {(a, x)|a ∈ A∧ (x ∈ B ∨x ∈ C)} = {(a, x)|(a ∈ A∧x ∈ B)∨ (a ∈ A∧x ∈
C)} = {y|y ∈ A×B ∨ y ∈ A× C} = A×B ∪A× C.

4 B.2

(a) See 1.
(b) We disprove it by a counterexample: let x = 1, ε = 2. Then the implication is false: the assumption
is true but the conclusion is not.

5 B.3

(a) x ∈ A ∩B is equivalent to x ∈ A ∧ x ∈ B, which is equivalent to 1A(x) = 1 ∧ 1B(x) = 1, which is
equivalent to 1A(x) · 1B(x) = 1.
(b) Any x ∈ X is either in A or in Ac, so exactly one of 1A and 1Ac will assume value 1 on x.
(c) If x is in A△B, we get 1 + 0− 0 (or 0 + 1− 0), just as we want for 1A∪B(x). If x ∈ A ∩B, we get
1 + 1− 1 = 1 = 1A∪B(x) Finally, if x ̸∈ A ∧ x ̸∈ B, we get 0 + 0− 0 = 1A∪B(x).
(d) 1A\B = 1A∩Bc = 1A ·1Bc = 1A ·(1X−1B) = 1A−1A ·1B , where in the last equality we distribute
and use that 1X is the function constantly equal to 1.
(e) If x ∈ A△B, we get 1 + 0− 2 · 0 (or 0 + 1− 2 · 0), which happens to equal 1A△B(x). If x ∈ A∩B,
we get 1 + 1− 2 = 0. Finally, if x ∈ (A ∪B)c, we get 0 + 0− 0.
(f) ∀x,1A(x) ≤ 1B(x) is equivalent to ∀x,1A(x) = 1 =⇒ 1B(x) = 1, which is equivalent to
∀x, x ∈ A =⇒ x ∈ B which is equivalent to A ⊂ B.
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6 B.4

The idea is that a subset S ⊂ X is uniquely encoded by the ability to answer for any x ∈ X whether
or not x ∈ S. This, we prove that θ is a bijection by constructing a two-sided inverse, which would
”decode” the subset S back from the piece knowledge described above.

Define ϕ : F (X, {0, 1}) → P (X) by ϕ(f) := {x ∈ X|f(x) = 1}. Then ϕ ◦ θ(S) = {x ∈ X|1S(x) =
1} = S, and (θ ◦ ϕ)(f) = 1{x∈X|f(x)=1}. The latter is a function which is 1 on x precisely when
x ∈ {x ∈ X|f(x) = 1} which tautologically amounts to the condition f(x) = 1. Thus this function
equals f .

We’ve shown that both ϕ ◦ θ and θ ◦ ϕ send their inputs to themselves, hence proving that ϕ is a
two-sided inverse of θ.

7 C.1

(a) In this sum, nonzero summands correspond bijectively to elements of A. Thus, the sum equals |A|.
(b) Immediately follows from summing the functions from both sides of the equality over all x ∈ X,
as in (a).
(c) The base case n = 1 is 1Ac = 1 − 1A, which was proven above. Assuming this formula holds up
to n − 1, let’s prove it for n. We have 1(A1∪...∪An)c = 1((A1∪...∪An−1)∪An)c = 1(A1∪...∪An−1)c∩Ac

n
=

1(A1∪...∪An−1)c · 1Ac
n
= ((1 − 1A1

) · . . . · (1 − 1An−1
))(1 − 1An

), which is what we needed. Here the
first equality was inspired by our desire to use the inductive hypothesis, the second one uses the first
equality from the hint, the third one uses the third equality from the hint, and the last one uses the
inductive hypotheses.
(d) The equality with characteristic functions is obtained by directly expanding the brackets. When
we do this, for each summand we take 1’s from some of the multiples (1− 1Ai

), and −1Ai
’s from the

rest. Thus we will get all possible products 1Ai1
· . . . · 1Aik

, each multiplied by (−1) k times, just as
the formula says.
Now, summing these equal functions over all x ∈ X, just like we did in (b), gives us the inclusion-
exclusion formula.

8 C.2

(a) g = g ◦ idX = g ◦ (f ◦ h) = (g ◦ f) ◦ h = idX ◦h = h.
(b) By the theorem from the lecture1, f , being an injection and a surjection, correspondingly has left
and right inverses. Now, by (a) they have to coincide.

1the first page of https://mathweb.ucsd.edu/~asalehig/math109-ss-22-lecture12.pdf
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