1. We say two finite groups G_1 and G_2 are algebraically independent if they do not have isomorphic simple quotients.

(a) Prove that G_1 and G_2 are algebraically independent if and only if the following holds:

$$H \leq G_1 \times G_2 \text{ and } \text{pr}_1(H) = G_1 \text{ and } \text{pr}_2(H) = G_2 \Rightarrow H = G_1 \times G_2.$$

(b) Suppose G_i and H are algebraically independent for $i=1,2$.
Prove $G_1 \times G_2$ and H are algebraically independent.

(c) Suppose $\text{gcd}(1|G_1,1|G_2|) = 1$. Prove that G_1 and G_2 are algebraically independent.

(d) Suppose G_1 and G_2 do not have isomorphic composition factors.
Prove that they are algebraically independent.

2. Suppose G_1 and G_2 are solvable groups and the following is a short exact sequence

$$1 \rightarrow G_1 \rightarrow G \rightarrow G_2 \rightarrow 1.$$

Prove that G is solvable.

(b) Suppose A_1 and A_2 are abelian groups and
the following is a short exact sequence

\[1 \rightarrow A_1 \rightarrow G \rightarrow A_2 \rightarrow 1. \]
Can we conclude that G is nilpotent?

3. Is S_4 solvable? Is it nilpotent?

4. Suppose G is a group and $G_{\geq 1}$ is the lower central series of G. Recall that $[x,y] := x^{-1} y^{-1} xy$. We sometimes write $xy := x^{-1} y x$; and so $[x,y] = x^{-1} y x$. A few useful formulas.

- $[x,y]^{-1} = [y,x].$
- $[x,y,z] = y^{-1} [x,z] [y,z].$
- $[x,y,z]^n = y^{-1} [x,z]^n [y,z]^n.$
- $[x^n,y] = \prod_{i=0}^{n-1} [x,y]^i.$
- $[x^n,y] = \prod_{i=0}^{n-1} [x,y]^i.$
- $[x^n,y] = \prod_{i=0}^{n-1} [x,y]^i.$

(a) Prove that $(xy)^n \equiv x^n y^n [y,x]^{\frac{n(n-1)}{2}} \pmod{V_3(G)}.$

(Hint: $z^n [y,x] \equiv [y,x] \pmod{V_3(G)}.$)

Use induction and $y^n x = xy^n [y^n,x].$

(b) Suppose N, M, L are normal subgroups of G. Prove

$[[N,M],L] \leq [[M,L],N] [[L,N],M].$
(c) Prove that, for any $m, n \in \mathbb{Z}^+$, we have

$$[\gamma_m(G), \gamma_n(G)] \subseteq \gamma_{m+n}(G).$$

(Hint: Use induction on $\min\{m, n\}$.)

(d) Let $f: \gamma_m(G)/\gamma_{m+1}(G) \times \gamma_n(G)/\gamma_{n+1}(G) \to \gamma_{m+n}(G)/\gamma_{m+n+1}(G)$,

$$f(x \gamma_{m+1}(G), y \gamma_{n+1}(G)) := [x, y] \gamma_{m+n+1}(G).$$

Prove that f is a well-defined bilinear map, which means

$$f(x_1 \cdot x_2, \overline{y}) = f(x_1, \overline{y}) f(x_2, \overline{y})$$

and

$$f(x, \overline{y_1} \cdot \overline{y_2}) = f(x, \overline{y_1}) f(x, \overline{y_2}).$$

(e) Let $L := \gamma_1(G)/\gamma_2(G) \oplus \gamma_2(G)/\gamma_3(G) \oplus \ldots$. So L is an abelian group. We use the plus sign $+$ to denote the group operation in L. Elements of $\gamma_1(G)/\gamma_{i+1}(G)$’s are called homogeneous elements of L. We let

$$[x \gamma_{i+1}(G), y \gamma_{i+1}(G)] := [x, y] \gamma_{i+n+1}(G),$$

and extend this bilinearly to a function $L \times L \to L$.

Use part (d) and convince yourself that this can be done.
Prove that
\[[[x, y], z] + [[[y, z], x], y] + [[[z, x], y], x] = 0 \]
in \(L \).

(Remark. This is called the Jacobi identity, and this shows that

\(L \) is a Lie ring.)

(4) Show that \(L \) is generated by \(V_1(G)/V_2(G) \) as a Lie ring; this means you have to show

\[[L_1, L_n] = L_{n+1} \]

for any \(n \in \mathbb{Z}^+ \), where \(L_n = V_n(G)/V_{n+1}(G) \).

(Remark. Problem 4 presents an idea of translating some of the
group theory problems to questions about Lie rings. This is the
start of the profound proof of the Restricted Burnside Problem by
E. Zelmanov. In the next problem, you can see an easy application of
the above connection with Lie theory.

5. (a) Suppose \(G = \langle g_1, \ldots, g_m \rangle \) is nilpotent and \(o(g_i) < \infty \).

Prove that \(G \) is finite.
(b) Suppose N is a nilpotent group. Prove that

$$T := \{ g \in N \mid o(g) < \infty \}$$

is a subgroup.

(c) Let $D_{\infty} := \left(\mathbb{Z}/2\mathbb{Z} \right) \times_c \mathbb{Z}$ where $c : \mathbb{Z}/2\mathbb{Z} \to \text{Aut}(\mathbb{Z})$

$$c(1+\mathbb{Z})(x) := -x.$$

Prove that D_{∞} is solvable; but

$$T := \{ x \in D_{\infty} \mid 0\infty < \infty \}$$

is not a subgroup.

6. Let A be a unital ring. A is not necessarily commutative.

Suppose \mathfrak{a} is an ideal of A. Suppose $\mathfrak{a}^n = 0$; that means

$$\forall x_1, \ldots, x_n \in \mathfrak{a}, \ x_1x_2\cdots x_n = 0.$$

Let $G := 1 + \mathfrak{a}$.

(a) Prove that G is a subgroup of the group $U(A)$ of units of A. (Recall $U(A) := \{ a \in A \mid \exists \alpha \in A, \ \alpha a = a \alpha = 1 \}$.)

(b) Prove that $\mathbb{V}_m(G) \subseteq 1 + \mathfrak{a}^m$; and deduce that G is nilpotent.