Groups are symmetries of objects. Let’s see a few examples to understand this sentence better.

At the level of set theory.

Let \(X \) be a set. As \(X \) does not have a particular structure any bijection \(f: X \to X \) is a symmetry! This group is denoted by \(S_X \), and is called the symmetric group of \(X \).

\[
S_X := \{ f: X \to X \mid f \text{ is a bijection} \}.
\]

For a positive integer \(n \), we write \(S_n \) instead of \(S_{\{1, 2, \ldots, n\}} \). You have seen before that

\[
|S_n| = n! = 1 \times 2 \times \cdots \times n.
\]

Euclidean plane.

Let \(E \) be the Euclidean plane; this means as a set \(E = \mathbb{R}^2 \); but it also has the Euclidean distance. Symmetries of \(E \) are \(\{ T: E \to E \mid T \text{ bijective} ; \text{ preserves distance} \} \).
Euclid characterized all the elements of $\text{Symm. of } E$.
He showed any symmetry can be achieved as a combination of a translation, a rotation, and/or a reflection about a line.

Q: What is the order of a reflection?
A: 2

Q: What is the order of a translation?
A: Infinity (it is NOT a torsion element.)

Q: What is the order of a rotation of angle α?
A: It depends on α.
A rotation of angle α is torsion; that means it has a finite order $\iff \frac{\alpha}{2\pi}$ is a rational number (why?)

Using linear algebra, one can write Euclid’s result as

$\text{Symm. of the Euclidean plane} = \{ T: \mathbb{R}^2 \to \mathbb{R}^2 | T_{v} = K_{v} + b \text{ where} \}

K \text{ is orthogonal; } K^T K = I
b \in \mathbb{R}^2 \}$.

Exercise: Prove that any symm. of the Euclidean plane is a
Combination of a translation, a rotation, and/or a reflection.

Hint. The key property is the following rigidity of the Euclidean plane:

Suppose A, B, C are three points that are not collinear. Then any point D is uniquely determined by its distance from A, B, and C.

$$D \mapsto (|AD|, |BD|, |CD|)$$

is a bijection.

CGPS works because of a similar reason.

This rigidity implies that, if a symmetry ϕ of the Euclidean plane fixes $(0,0)$, $(1,0)$, and $(0,1)$, then ϕ is the identity map.

Now for an arbitrary symmetry $\phi : E \to E$,

first we compose ϕ with a translation to make sure that $(0,0)$ is fixed; second compose it with a rotation about $(0,0)$ to make sure $(1,0)$ is fixed, too.
Now that \((0,0)\) and \((1,0)\) are fixed, \((0,1)\) is either sent to itself or to \((0,-1)\).

Hence by composing with a reflection, if needed, we can get that

\[
L \cdot R \cdot T \cdot \Phi \text{ fixes the triangle } (0,0), (1,0), (0,1). \text{ Therefore it is the identity map.}
\]

Symmetries of a graph.

Let \(G = (V, E)\) be a graph. Then the group of symmetries of \(G\) is denoted by \(\text{Aut}(G)\):

\[
\text{Aut}(G) = \{ f : V \to V \mid f \text{ is a bijection}; \forall v, w, v, w \in V, \exists e, w, g \in E \iff \exists e, f(v), f(w) \in E \}
\]

\(v\) is connected to \(w\)

\(f(v)\) is connected to \(f(w)\).

In many instances, we would like to show that the group of
symmetries of an object determines the object in a unique way. This is how Klein wanted to classify "geometries"; and this point of view is crucial in Galois theory.

Example Give some elements of Symm(5)

\[
\begin{array}{c}
\text{rotation. } \text{So } \tau^5 = \text{id.} \\
\text{(No fixed point on the graph.)}
\end{array}
\]

\[
\begin{array}{c}
\text{reflection. } \text{So } \sigma^2 = \text{id.} \\
\text{(Has exactly one fixed point in the set of vertices)}
\end{array}
\]

Q Do \(\sigma \) and \(\tau \) commute?

A To answer this question we have to look at \(\tau \sigma \tau^{-1} \) and find out if it is \(\sigma \) or not. (\(\tau \sigma \tau^{-1} \) is called a conjugate of \(\sigma \); we have conjugated \(\sigma \) by \(\tau \).)

A good technique is looking at the fixed point of \(\sigma \):
We know $\sigma(1) = 1$ and $\tau(1) = 2$. So

$$\sigma((\tau^{-1}(2))) = 1,$$

which implies

$$(\tau \circ \sigma \circ \tau^{-1})(2) = 2.$$

So the fixed point of $\tau \circ \sigma \circ \tau^{-1}$ is different from σ, which implies $\tau \circ \sigma \circ \tau^{-1}$. Looking at the graph, we can see that $\tau \circ \tau^{-1}$ can be described $\tau \circ \tau^{-1}$ as the following reflection:

One can see that if a symmetry of does not have a fixed point it is a rotation; and if it is not identity and it fixes a point, then it is a "reflection". So $|\text{Symm}(\bigcirc)\bigcirc| = 10$.

Def. $\text{Symm}(\bigcirc)$ is called the dihedral group D_{2n}.

Exercise. Show that $|D_{2n}| = 2n$; n: rotations and n: reflections.
So far we have started with an object X, and then considered
the group of symm. of $X = \{ f : X \rightarrow X \mid f \text{ is a bijection and } f \text{ preserves the structure of } X \}$.

Next we would like to make this abstract:

Def. Let G be a group and X be a set. A (left) action
of G on X is $m : G \times X \rightarrow X$, $m(g, x) = g \cdot x$
which has the following properties:

1. $e \cdot x = x$ for any $x \in X$ where e is the
 neutral element of G.

2. $\forall x \in X, \forall g_1, g_2 \in G$, $g_1 \cdot (g_2 \cdot x) = (g_1 g_2) \cdot x$.

we say G acts on X, and write $G \curvearrowright X$.

Important example.

Let X be any object; think about just a set, Euclidean
plane, a graph, etc. Then $\operatorname{Symm}(X) \curvearrowright X$.

Proof. $f \in \operatorname{Symm}(X) \iff f : X \rightarrow X$ is a bijection and
f preserves the structure of X.
Now we need to define the group action map

\[\text{Symm}(X) \times X \rightarrow X \]

\[(f, x) \mapsto ? \]

The group action should tell us what the group element \(f \)
does to the point \(x \).

As soon as we phrase the question in this way, we
would be forced to think about \(f(x) \) as a possible
answer. And it is:

Let \(m: \text{Symm}(X) \times X \rightarrow X \), \(m(f, x) = f(x) \).

Then \(m(I_X, x) = I_X(x) = x \).

The identity function of
\(X \) is the neutral element
of \(\text{Symm}(X) \)

\[\forall f_1, f_2 \in \text{Symm}(X), \quad m(f_1, m(f_2, x)) = m(f_1, f_2(x)) = f_1(f_2(x)) \]

\[= (f_1 \circ f_2)(x). \]

\[= m(f_1 \circ f_2, x). \]

Ex. \(S_n \subset \{1, 2, ..., n\} \); \(\text{GL}_n(\mathbb{R}) \subset \mathbb{R}^{n \times n} \), \((A, x) \mapsto A \cdot x \)
The following is an important point of view towards functions \(G \times X \to X \) (here we are not assuming any special property for \(G, X, \) or \(m \)).

For any such function, we can fix the first component \(g \) and get a function \(m_g : X \to X \). This way we get a family \(\{ m_g \}_{g \in G} \) of functions \(m_g : X \to X \).

And this can be reversed:

\[
\begin{array}{ccc}
G \times X & \xrightarrow{m} & X \\
\downarrow & & \downarrow \\
\{ m_g \}_{g \in G} & \to & X \\
\end{array}
\]

where \(m_g : X \to X \)

\[
m_g(x) = m(x)
\]

is a bijection.

Now we would like to know what happens if \(m : G \times X \to X \) is a group action. In the next lecture we will prove

Theorem. There is a bijection between

\[
\{ \text{group action } m : G \times X \to X \} \quad \text{and} \quad \text{Hom}(G, S_X).
\]

(In fact, the function given in \(\oplus \) induces a bijection.)