Def. Suppose G is a finite group, $p^n | |G|$ and $p^{n+1} \nmid |G|$. Then a subgroup P of order p^n is called a Sylow p-subgp of G. And $\text{Syl}_p(G) = \{P \leq G \mid P \text{ is a Sylow } p\text{-subgp}\}$.

So the 1st Sylow theorem implies $\text{Syl}_p(G) \neq \emptyset$.

Observe that $G \cong \text{Syl}_p(G)$ by conjugation.

Theorem. $G \cong \text{Syl}_p(G)$ is a transitive action; that means any two Sylow p-subgroups are conjugate.

We prove the following stronger version:

(Sylow’s 2nd thm) **Theorem** Suppose P' is a p-subgp of G, and $P \in \text{Syl}_p(G)$.

Then $\exists g \in G$, $P' \leq gPg^{-1}$.

$P' \cong G/P$ by the left translations. Since P' is a p-gp,

$$|G/P| = |(G/P)^{P'}| \mod p.$$

$gP \in (G/P)^{P'} \iff \forall P' \in P', \; P'gP = gP$

$\iff \forall P' \in P', \; g^{-1}P'g \in P$

$\iff g^{-1}Pg \leq P \iff P \leq gPg^{-1}$.

Lecture 07: Sylow's theorems

Wednesday, October 11, 2017 12:14 AM

So \(P' \leq \text{a conjugate of } P \iff (G/P)^P \neq \emptyset \).

Since \(p \nmid |G/P| \), by \(\varpi \) \(p \mid |(G/P)^P| \). And so \((G/P)^P \neq \emptyset \). \(\Box \)

Corollary. Suppose \(P \in \text{Syl}_p(G) \). Then \(\text{Syl}_p(N_G(C_P)) = \varpi P \).

\(\text{pf.} \) Since \(P \in \text{Syl}_p(G) \), \(p \nmid |G/P| \). Therefore \(p \nmid |N_G(C_P)/P| \).

So \(P \in \text{Syl}_p(N_G(C_P)) \). By the previous theorem (Sylow's 2nd theorem) any Sylow p-subgroup of \(N_G(C_P) \) is a conjugate (in \(N_G(C_P) \)) of \(P \). Since \(P < N_G(C_P) \), we deduce \(\varpi P = \text{Syl}_p(N_G(C_P)) \). \(\Box \)

Corollary. Suppose \(P \in \text{Syl}_p(G) \). Then \(N_G(N_G(C_P)) = N_G(C_P) \).

\(\text{pf.} \) Let \(g \in N_G(N_G(C_P)) \). Then by the previous corollary

\[\varpi g P g^{-1} = \text{Syl}_p(g N_G(C_P) g^{-1}) \] (Conjugation by \(g \) is an automorphism.)

\[= \text{Syl}_p(N_G(C_P)) \] (\(g \in N_G(N_G(C_P)) \),)

\[= \varpi P \] (previous corollary)

\[\Rightarrow g P g^{-1} = P \Rightarrow g \in N_G(C_P). \]

Therefore \(N_G(N_G(C_P)) \leq N_G(C_P) \). The other direction is clear. \(\Box \)
Lecture 07: Sylow's theorem

Wednesday, October 11, 2017 12:01 AM

(Sylow's 3rd) Theorem. \(| \text{Syl}_p(G) | \equiv 1 \pmod{p} \).

PROOF. Let \(P_o \) be a Sylow \(p \)-subgroup. If \(P_o = \emptyset \), then

\(| \text{Syl}_p(G) | = 1 \) and we are done. So w.l.o.g. we will assume

\(P_o \neq \emptyset \). \(P_o \cap \text{Syl}_p(G) \) by conjugation. So

\(| \text{Syl}_p(G) | = | \text{Syl}_p(G)^{P_o} | (\pmod{p}) \). \(\circledast \)

\(P \in \text{Syl}_p(G) \iff \forall \gamma \in P_o, \ P \gamma P_o^{-1} = P \)

\(\iff P_o \subseteq N_G(P) \).

\(\iff P_o \in \text{Syl}_p(N_G(P)) = \emptyset \).

\(\iff P_o = P \).

So \(| \text{Syl}_p(G)^{P_o} | = 1 \).

Therefore by \(\circledast \) \(| \text{Syl}_p(G) | \equiv 1 \).

Sylow's theorems are very instrumental for describing possible group structures of a group with a given order. Here is a standard example:

Problem. Describe groups of order \(pq \), where \(p \) and \(q \) are primes, and \(p < q \).
Let \(n_q := |\text{Syl}_q(G)| \); and \(Q_0 \in \text{Syl}_q(G) \).

Since \(G \cap \text{Syl}_q(G) \) transitively, \(|\text{Syl}_q(G)| = |G : Q_0| = [G : N_G(Q_0)] \).

So \(n_q \mid |G/Q_0| \); and, by the 3rd Sylow theorem, \(n_q \equiv 1 \pmod{q} \). Therefore \(n_q \mid p \) and \(q \mid n_q - 1 \).

Since \(p \) is prime, either \(n_q = 1 \) or \(n_q = p \). As \(p < q \) and \(q \mid n_q - 1 \), we get that \(n_q = 1 \); this implies \(Q_0 \triangleleft G \).