\[\left\langle \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \right\rangle \cong \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}, \text{ where } \bar{g} \text{ means } \\
g \in \mathbb{Z}(\text{SL}_2(\mathbb{R})) \in \text{SL}_2(\mathbb{R})/\mathbb{Z}(\text{SL}_2(\mathbb{R})) =: \text{PSL}_2(\mathbb{R})/\{I, -I\} \]

Proof. This time we use the action of \(\text{SL}_2(\mathbb{R}) \) on the upper half plane; \(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot z = \frac{az + b}{cz + d} \).

And so \(\begin{bmatrix} 1 & 2n \\ 1 & 1 \end{bmatrix} \cdot z = z + 2n \) and

\[\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \cdot z = \frac{-1}{z} \]

Therefore \(\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \) sends the blue region to the yellow region, and the yellow region to the blue region.

A shift by at least two steps send \(X_1 \) to \(X_2 \). So we have

\[\left\langle \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \right\rangle \cdot X_1 \subseteq X_2 \]

\[\left\langle \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \right\rangle \cdot X_2 \subseteq X_1. \]

Thus by the ping-pong lemma

\[\left\langle \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \right\rangle \cong \left\langle \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \right\rangle \ast \left\langle \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \right\rangle \cong \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}. \]
Ex. Suppose \(x > 1 \), and let \(a = \begin{bmatrix} x & \lambda \\ 1 & x^{-1} \end{bmatrix} \). Suppose \(b \in SL_2(\mathbb{R}) \) has the following property:

\[
b \cdot \mathcal{E}_0, \mathcal{E}_\infty \cap \mathcal{E}_0, \mathcal{E}_\infty = \emptyset.
\]

Then

\[
SL_2(\mathbb{R}) \cap \mathbb{R} \cup i\mathbb{R} = \begin{bmatrix} x & y \\ z & t \end{bmatrix}, \quad r := \frac{zx + yt}{zr + t}.
\]

Notice that \(a \) has exactly two fixed points: \(a \cdot 0 = 0, a \cdot \infty = \infty \); and \(a \) is contracting everything except 0 towards \(\infty \).

\[
\text{Fix}(b a b^{-1}) = b \cdot \text{Fix}(a) = \mathcal{E}_0, b \cdot \mathcal{E}_\infty;
\]

and so

\[
\text{Fix}(b a b^{-1}) \cap \text{Fix}(a) = \emptyset.
\]

- \(a \) is contracting everything except 0 towards \(\infty \)
- \(a^{-1} \) is contracting everything except \(\infty \) towards 0
- \(b a b^{-1} \) is contracting everything except \(b \cdot 0 \) towards \(b \cdot \infty \)
- \(b a b^{-1} \) is contracting everything except \(b \cdot \infty \) towards \(b \cdot 0 \)

Let's use circle model of \(\mathbb{R} \cup i\mathbb{R} \).

Suppose \(a_1, a_2 \in \text{Homeo}(S^1) \);

\(a_1 \) has two fixed points \(x^- \) and \(x^+ \). And
there are nbhds U_x^- of x^- and U_x^+ of x^+ s.t.
\[a_n^+ \cdot (S^1 \setminus U_x^-) \subseteq U_x^+ \quad \forall n \in \mathbb{Z}^+ \]
\[a_n^- \cdot (S^1 \setminus U_x^+) \subseteq U_x^- \quad \forall n \in \mathbb{Z}^+ \]

a_2 has two fixed points y^- and y^+ and there are nbhds U_y^- of y^- and U_y^+ of y^+ s.t.
\[a_n^+ \cdot (S^1 \setminus U_y^-) \subseteq U_y^+ \quad \forall n \in \mathbb{Z}^+ \]
\[a_n^- \cdot (S^1 \setminus U_y^+) \subseteq U_y^- \quad \forall n \in \mathbb{Z}^+ \]

Suppose U_x^+ and U_y^+'s are disjoint.

Let $X_1 := U_x^+ \cup U_x^-$ and $X_2 := U_y^+ \cup U_y^-$. Then
\[(\langle a_1 \rangle \setminus I) \cdot X_2 \subseteq X_1 \]
and \((\langle a_2 \rangle \setminus I) \cdot X_1 \subseteq X_2 \). And so by the ping-pong lemma \(\langle a_1, a_2 \rangle \cong \langle a_1 \rangle \ast \langle a_2 \rangle \cong \mathbb{Z} \ast \mathbb{Z} \). So:

Theorem. Suppose $a = \begin{bmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{bmatrix}$ where $\lambda > 1$; and $b \in SL_2(\mathbb{R}) \setminus \left(\left[* \ *
ight] \cup \left[* \ *
ight] \cup \left[* \ *
ight] \right)$. Then for large enough n, \(\langle a^n, b a^n b^{-1} \rangle \cong F_2 \). In particular, \(\langle a, b \rangle \) has a
non-commutative free subgroup.

Remark. The conditions on b are necessary as otherwise <a, b> has a subgroup of index ≤ 2 which is solvable.

Theorem (Jacques Tits) A finitely generated subgroup \(G \) of \(GL_n(F) \) (where \(F \) is a field) is either virtually solvable or it contains a non-commutative free subgroup.

We say \(G \) is virtually solvable if \(G \) has a solvable subgroup of finite index.

In the next lecture we will see that a virtually solvable group does not have a non-commutative free subgroup.