1. In this problem, you prove that $\text{Aut}(S_n) = \text{Inn}(S_n)$ if $n \geq 7$.
 (All the automorphisms of S_n are inner.) Suppose $\varphi \in \text{Aut}(S_n)$.

(a) Suppose $n \geq 5$, and φ sends transpositions to transpositions; that means $|\text{supp}(\varphi(a \ b))| = 2$ for any $1 \leq a < b \leq n$. Prove that φ is an inner automorphism.

Hint: Suppose T_1 and T_2 are two transpositions. Observe:

- T_1 and T_2 do not commute if and only if $|\text{supp}(T_1) \cap \text{supp}(T_2)| = 1$.
- Any transposition gives us an edge in the complete graph with n vertices; by assumption φ induces a bijection on the edges of the complete graph. ① implies two edges with a common vertex are mapped to two edges with a common vertex. Use this to get a permutation on vertices.

(b) Show that for any transposition T, $\varphi(T) \varphi^{-1} = T$.

(c) Prove that $\varphi(\sigma_1)$ and $\varphi(\sigma_2)$ are conjugate if and only if σ_1 and σ_2 are conjugate.

Let T_k be the set of permutations with cycle type $\frac{2, \ldots, 2}{k}$, $\frac{1}{n-2k}$ for instance T_1 consists of transpositions. Show that
\[|T_k| = n(n-1) \cdots (n-2k+1)/k! \cdot 2^k \geq \frac{n(n-1) \cdots (n-2k+1)}{2} \frac{(2k-2)!}{k! \cdot 2^{k-1}}. \]

1. Prove that \(\varphi(T_i) = T_k \) for some \(1 \leq k \leq n/2 \). (Use part 1.)

2. Prove that \(\varphi(T_i) = T_i \) and deduce that \(\varphi \in \text{Inn}(S_n) \).

3. In this problem, you prove that \(\text{Aut}(S_6) \neq \text{Inn}(S_6) \).

(In this problem you can use the fact that \(A_n \) is simple if \(n \geq 5 \))

(a) Show that \(S_5 \) has 6 Sylow 5-subgroups. Deduce that \(S_6 \) has a subgroup \(H \) which is isomorphic to \(S_5 \) and acts transitively on \(\{1, 2, \ldots, 6\} \). And so \(\text{Fix}(\sigma \cdot H \cdot \sigma^{-1}) = \emptyset \) for any \(\sigma \in S_6 \).

(b) Consider \(S_6 \acts S_6/H \) by the left translations. Since \(|H| = |S_5| \), we have \(|S_6/H| = 6 \). So the above action gives us a group homomorphism \(\varphi : S_6 \rightarrow S_6 \). Prove that \(\varphi \) is an isomorphism.

(c) Show that \(\text{Fix}(\varphi(H)) \neq \emptyset \), and deduce \(\varphi \) is NOT an inner automorphism of \(S_6 \).
One of the important result in finite group theory is the following result of Burnside:

Burnside’s normal p-complement theorem.

Suppose G is a finite group, $1 \neq P$ is a Sylow p-subgroup, and $P \subseteq Z(N_G(P))$. Then $\exists \ N \triangleleft G$ st. $|N| = |G/P|$. This is an extremely useful theorem; for instance try to use this to give a short of a result we have proved earlier:

a group G of order p^{e+1} has a normal subgroup of order p or $p+1$. (This is not part of the problem). In this problem you will see the powerful combination of this theorem with the Schur-Zassenhaus theorem:

3. Suppose $\gcd(n, \varphi(n)) = 1$, and G is a group of order n. Prove that a group of order n is cyclic.

(Hint: Arithmetic observations: $\gcd(n, \varphi(n)) = 1 \Rightarrow n$ is square-free

$\gcd(n, \varphi(n)) = 1 \Rightarrow \gcd(m, \varphi(m)) = \gcd(m, \varphi(m) + \varphi(m)) = \gcd(n, \varphi(n)) = 1$. Use strong induction on n; and the mentioned theorems.)
4. Suppose \(G \) is a finite group and for any \(d \in \mathbb{Z}^+ \),
\[
|\{g \in G \mid g^d = e_G \}| \leq d.
\]
Prove that \(G \) is cyclic.

(Hint: Let \(X_d := \{g \in G \mid o(g) = d \} \) and \(\Psi(d) := |X_d| \).

Step 1. Show, if \(\Psi(d) \neq 0 \), then \(\Psi(d) = \phi(d) \).

Step 2. Notice \(\sum_{d \mid n} \Psi(d) = n \) where \(n = |G| \).

Step 3. From arithmetic we know \(\sum_{d \mid n} \phi(d) = n \). (You are allowed to use this without proof.) Use steps 1 and 2 to show \(d \mid n \Rightarrow \Psi(d) = \phi(d) \); and finish proof.

5. For a group \(G \), let \([G,G]\) be the subgroup generated by
\[
[g_1, g_2] := g_1^{-1} g_2^{-1} g_1 g_2 \quad \text{for} \quad g_1, g_2 \in G.
\]

(a) Show that \([G,G]\) is a characteristic subgroup of \(G \).

(b) For \(N \trianglelefteq G \), prove that \(G/N \) is abelian if and only if \([G,G] \subseteq N \).

(c) Prove that \([S_n,S_n] = A_n\) if \(n \geq 3 \).
6. Prove that there is no finite group G such that

\[[G,G] \cong S_4. \]

(Hint. Suppose to the contrary that there is such a group G. Convince yourself that $P := \langle I, (1\ 2\ 3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3) \rangle$ is the unique Sylow 2-subgp of A_4; and so P is a characteristic subgroup of A_4.

- G acts by conjugation on $[G,G] \cong S_4$; argue why this induces an action on $A_4/P \cong \mathbb{Z}/3\mathbb{Z}$;

- Argue why $[G,G]$ should act trivially on A_4/P; and deduce $S_4 \cap A_4/P$ by conjugation should be the trivial action.

- Check that $(1\ 2\ 3)^{(1\ 2)} \neq (1\ 2\ 3)^P$, and get a contradiction.)

7. (a) Prove that $\langle (1\ 2), (1\ 2\ \ldots\ n) \rangle = S_n$.

(b) Suppose p is an odd prime, $\tau \in S_p$ is a transposition and $\sigma \in S_p$ has order p. Prove that $\langle \tau, \sigma \rangle = S_p$.
(Hint. (a) Let $H = \langle (1, 2), (1, 2 \ldots n) \rangle$. Notice $(1, 2)(2, 3 \ldots n) = (1, 2 \ldots n)$ and so $(2, 3 \ldots n) \in H \Rightarrow (1, 2) (2, 3 \ldots n) = (1, 2 \ldots n) \in H$.

(b) After reordering, we can assume $\sigma = (1, 2 \ldots p)$. Let $H = \langle (a, b), (1, 2 \ldots p) \rangle$; argue why we can further assume $H = \langle (b, a), (1, 2 \ldots p) \rangle$ after another reordering if needed; using σ^{-1} and part (a) finish the proof.)