1. (a) Suppose V is a vector space and G is a perfect group subgroup of $G L(V)$; ie. $G=[G, G]$. Suppose no non-trivial subspace of V is invariant under G; that means if W is a subspace of V and, for any $g \in G, g W=W$, then $W=0$ or $W=V$.
Prove that $H:=G \times V$ is perfect.
(b) Let $V:=\mathbb{R}^{2 n}$ and $f: V \times V \rightarrow R$,

$$
f\left(\left(x_{1} \cdots, \cdots, x_{2 n}\right),\left(y_{1}, \cdots, y_{2 n}\right):=x_{n+1} y_{1}+\cdots+x_{2 n} y_{n}-x_{1} y_{n+1}-\cdots-x_{n} y_{2 n}\right.
$$

Convince yourself that f is a non-degenerate bilinear form; that means: $f\left(c_{1} v_{1}+c_{2} v_{2}, \omega\right)=c_{1} f\left(v_{1}, \omega\right)+c_{2} f\left(v_{2}, \omega\right)$

$$
\begin{aligned}
& f\left(v, c_{1} \omega_{1}+c_{2} \omega_{2}\right)=c_{1} f\left(v, \omega_{1}\right)+c_{2} f\left(v, \omega_{2}\right) \\
& f(v, V)=0 \Rightarrow v=0 \\
& f(V, \omega)=0 \Rightarrow \omega=0
\end{aligned}
$$

And it is symplectic; that means $f(v, v)=0$ for any $v \in V$.
Let $H(v, f):=\left\{(v, c) \mid v \in \mathbb{R}^{2 n}, c \in R\right\}$, and

$$
\left(v_{1}, c_{1}\right) \cdot\left(v_{2}, c_{2}\right):=\left(v_{1}+v_{2}, c_{1}+c_{2}+\frac{1}{2} f\left(v_{1}, v_{2}\right)\right)
$$

Convince yourself that $H(V, f) \longrightarrow\left\{\left.\left[\begin{array}{cc}1 & \omega^{t} \\ I & c \\ I & \omega_{1}^{\prime} \\ 1\end{array}\right] \right\rvert\, \begin{array}{c}1, \omega^{\prime} \in \mathbb{R}^{n}\end{array}\right\}$

$$
\left.c\left(\omega, \omega^{\prime}\right), c\right) \longmapsto\left[\begin{array}{ccc}
1 & \omega^{+} & 1 \\
& 1 & 1+\frac{1}{2} \omega^{\prime} \omega^{\prime} \\
& \omega^{\prime} \\
1
\end{array}\right]^{c \in \mathbb{R}}
$$

is a group isomorphism. $H(V, f)$ is called the Heisenberg group. (b-1) Prove that $\left[\left(v_{1}, c_{1}\right),\left(v_{2}, c_{2}\right)\right]=-f\left(v_{1}, v_{2}\right)$.
(b-2) Prove that $Z(H(v, f))=0 \oplus \mathbb{R}$ and

$$
\begin{aligned}
0 \rightarrow \mathbb{R} & \rightarrow H(v, f) \rightarrow V \rightarrow 0 \\
c & \longmapsto(0, c) \\
(v, c) & \longmapsto v
\end{aligned}
$$

is a short exact sequence.
(b-3) Prove that $[H(v, f), H(v, f)]=0 \oplus \mathbb{R}$, and $H(v, f)$ is nilpotent.
(c) Let $S_{p_{2 n}}(\mathbb{R}):=\{g \in G L(V) \mid f(g \cdot v, g \cdot w)=f(v, w)\}$ for any $v, w \in V$ (it is called symplectic group.) For $g \in S_{P_{2 n}}(\mathbb{R})$, let $g \cdot(v, c):=(g \cdot v, c)$. Prove that this map embeds $S_{P_{2 n}}(\mathbb{R})$ into Ant $(H(V, f))$.
(d) We knew that $S_{p_{2 n}}(\mathbb{R})$ is perfect and no nontrivial subspace of $\mathbb{R}^{2 n}$ is invariant under $S_{P_{2 n}}(\mathbb{R})$. Prove that $S_{p_{2 n}}(\mathbb{R}) \times H(V, f)$ is perfect.
(e) Prove that $(0 \oplus \mathbb{R}) \subseteq Z\left(S_{P_{2 n}}(\mathbb{R}) \times H(V, f)\right)$.

Homework 6
Friday, November 2, 2018 9:50 AM
2. Suppose G is a group of order $2^{k} \mathrm{~m}$ where m is odd.

Suppose a Sylow 2-subgraup P of G is cyclic. Prove that G has a characteristic subgroup of order m.
IHint Pint 1 show that $G \xrightarrow{\Phi} \xrightarrow{\Phi} S_{G} \xrightarrow{\epsilon}\{ \pm 1\}$ is non-trivial;
similar to what we did in class.
Point 2. Show that er fop is a characteristic surgy of index 2 .
Point 3. Use induction and deduce that there are char. subgps of order $2^{i} m$ for any $0 \leq i \leq k$. I (Please do not use Burnside's normal p-compl. theorem)
3. Suppose G is a finite group and $H \leq G$.
(a) Prove that $H=G \Longleftrightarrow H \Phi(G)=G$.
(b) Let $\pi: G \rightarrow G / \Phi(G)$ be the natural projection map. Suppose
$S \subseteq G$. Prove that $\langle S\rangle=G \Leftrightarrow\langle\pi(S)\rangle=G / \Phi$
In particular $\langle S\rangle=G \Leftrightarrow\langle S \backslash \Phi(G)\rangle=G$.
(c) Let $d(G)=$ the min. number of generators of G.

Prove that $d(G)=d(G / \Phi(G))$.
[Hint (a) If $H \neq G$, then \exists a max. sulogp $H \leq M<G$.

$$
\Rightarrow \quad M_{\Phi(G)} \neq G_{\Phi(G)} \cdot I
$$

Homework 6
Friday, November 2, 2018 9:57 AM
4. Suppose G is a finite group; and $\Phi(G)$ is the Frattini subgroup of G.
(a) Suppose P is a Sylow subgroup of $\Phi(G)$. Prove that $P \triangleleft G$.
(b) Prove that $\Phi(G)$ is nilpotent.
[Hint. (a) Use Frattini's argument: $N_{G}(P) \cdot \Phi(G)=G$, and deduce $N_{G}(P)=G$.]
5. Suppose G is a finite p-group; and $d(G)$ is the min. number of generators of G.
(a) Prove that $d(G)=\operatorname{dim}_{\mathbb{Z} / P \mathbb{Z}}\left(G / G_{G}^{P}[G G]\right)$.
(b) Suppose S is a minimal generating set of G; that means $\langle S\rangle=G$ and $\left\langle S^{\prime}\right\rangle \neq G$ if $S^{\prime} \nsubseteq S$.

Prove that $\quad|S|=d(G)$.
(c) Does part (b) hold for finite groups that are not p-groups; that means for a finite group H do we have $\left|S_{1}\right|=\left|S_{2}\right|$ if S_{1} and S_{2} are two minimal generating sets?
$[H / \operatorname{lint}(c) \mathbb{Z} / 6 \mathbb{Z} \simeq \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$.

Homework 6
Friday, November 2, 2018 10:01 AM
6. Prove that, if $G / Z(G)$ is nilpotent, then G is nilpotent.
7.(a) Prove that $G / Z(G)$ cannot be a non-trivial cyclic group.
(b) Prove that any group of order p^{2} is abelian.
c) Suppose G is a non-abelian group of order p^{3}. Prove that (ci) $Z(G) \simeq \mathbb{Z} / P \mathbb{Z}$.
(c2) $Z(G)=[G, G]$, and $G / Z(G) \simeq \mathbb{Z} / P \mathbb{Z} \times \mathbb{Z} / P \mathbb{Z}$.
(c3) $d(G)=2$; that means G can be gen. by 2 elements, but not by 1 element!

