Homework 8
Saturday, December 1, 2018

1. Suppose R is a unital ring that is not necessarily commutative. Prove that \tilde{I} is a both sided ideal of $M_{n}(R)$ if and only if $\tilde{I}=M_{n}(I)$ for some both sided ideal I of R.
(Remark. Proof of this result just needs a bit of patience with matrix computations, but it is an important result. In particular, it shows that $M_{n}(\mathbb{C})$ has no proper non-zero both sideded ideal.) CLint. Let $e_{i j} \in M_{n}(R)$ st. the $r_{i j}$ entry of $e_{i j}$ is 1 and the other entries are 0 . Then $e_{i j} e_{k l}= \begin{cases}0 & \text { if } j \neq k, \\ e_{i l} & \text { if } j=k .\end{cases}$
So, for $a=\left[a_{i j}\right], \quad e_{k k} a e_{l l}=\sum_{i, j} a_{i j} e_{k k} e_{i j} e_{l l}$

$$
=a_{k l} e_{k l}
$$

- Let $I:=\{x \in \mathbb{R} \mid x$ is an entry of an element of $\tilde{I}\}$.)

2. Suppose R is a unital commutative ring.
(a) For $q \in \operatorname{Spec}(R)$, let $p[x]:=\left\{\sum_{i=0}^{n} a_{i} x^{\prime} \in R[x] \left\lvert\, \begin{array}{c}n \in Z^{20} \\ a_{i} \in \$ \phi\end{array}\right.\right.$. Prove that $x[x]$ e $\operatorname{Spec}(R[x])$ (Hint. Use $[x[x] \rightarrow(R / x)[x]$

Homework 8
(b) Prove that $\operatorname{Nil}(\operatorname{R}[x])=\operatorname{Nil}(R)[x]$, where again

$$
\operatorname{Ni}\left((R)[x]:=\left\{\sum_{i=0}^{n} a_{i} x^{i} \in R[x] \mid a_{i} \in \operatorname{Nil}(R), n \in \mathbb{Z}^{Z 0}\right\}\right.
$$

(c) Prove that

$$
\begin{gathered}
R[x]^{x}=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid a_{0} \in \mathbb{R}^{x}, a_{1}, \ldots, a_{n} \in N i l(R),\right\} . \\
n \in \mathbb{Z}^{+}
\end{gathered}
$$

3. Convience yourself that $\mathbb{Q}[\sqrt{2}]=\{a+\sqrt{2} b \mid a, b \in \mathbb{Q}\}$ is a subring of \mathbb{R}. Let $\phi: \mathbb{Q}[\sqrt{2}] \rightarrow M_{2}(\mathbb{Q})$,

$$
\phi(a+\sqrt{2} b):=\left[\begin{array}{cc}
a & b \\
2 b & a
\end{array}\right]
$$

Prove that ϕ is a ring homomorphism, and deduce that

$$
\mathbb{Q}[\sqrt{2}] \simeq\left\{\left.\left[\begin{array}{ll}
a & b \\
2 b & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{Q}\right\} .
$$

4. Let I be the ideal generated by 2 and x in $\mathbb{Z}[x]$. Prove that I is not a principal ideal.
5. Let $\omega:=\frac{-1+i \sqrt{3}}{2}$ and $\mathbb{Z}[\omega]=\{a+b \omega \mid a, b \in \mathbb{Z}\}$. Convience yourself that $\mathbb{Z}[\omega]$ is a subring of \mathbb{C}.
(a) Let $N(a+b \omega):=(a+b \omega)(a+b \bar{\omega})$. Convience yourself that $N\left(z_{1} z_{2}\right)=N\left(z_{1}\right) N\left(z_{2}\right)$ and $N(a+\omega b)=a^{2}-a b+b^{2}$.

Homework 8
Saturday, December 1, 2018
Prove that $\forall z_{1}, z_{0_{2}} \in \mathbb{Z}[\omega], \exists q, r \in \mathbb{Z}[\omega]$ st. $z_{1}=z_{2} \cdot q+r$ and $N(r)<N\left(z_{2}\right)$.
(b) Prove that $\mathbb{Z}[\omega]$ is a PID.
(c) Prove that $\mathbb{Z}[\omega]^{x}=\left\{ \pm 1, \pm \omega, \pm \omega^{2}\right\}$.
(This problem does not need a help, but the following picture can be helpful:

6. Let n be a square-free integer more than 3. Let

$$
\mathbb{Z}[\sqrt{-n}]=\{a+\sqrt{-n} b \mid \quad a, b \in \mathbb{Z}\} .
$$

(a) Prove that $2, \sqrt{-n}, 1 \pm \sqrt{-n}$ are all irreducible in $\mathbb{Z}[\sqrt{-n}]$.
(b) Find an element in R which is irreducible and not prime
(c) Show that $\mathbb{Z}[\sqrt{-n}]$ is not a UFD.

