Homework 8 Saturday, December 1, 2018 11:32 AM 1. Suppose R is a unital ring that is not necessarily commutative. Prove that \widetilde{I} is a both sided ideal of $M_n(R)$ if and only if $I = M_n(I)$ for some both sided ideal I of R. (Remark. Proof of this result just needs a bit of patience with matrix computations, but it is an important result. In particular, it shows that $M_n(\mathbb{C})$ has no proper non-zero both sideded ideal.) (Hinto Let en eMn (R) st. the rij entry of enj is 1 and the other entries are o. Then $e_{ij}e_{kl} = \begin{cases} o & if j \neq k, \\ e_{il} & if j = k. \end{cases}$ So, for $a = [a_{ij}]$, $e_{kk} a e_{ll} = \sum_{i,j} a_{ij} e_{kk} e_{ij} e_{ll}$ $= a_{kl} e_{kl}$ • Let $I := \frac{2}{x \in R} | x \text{ is an entry of an element of } I := \frac{2}{x \in R} | x \text{ is an entry of an element of } I := \frac{2}{x \in R} | x \text{ is an entry of an element of } I := \frac{2}{x \in R} | x \text{ is an entry of an element of } I := \frac{2}{x \in R} | x \text{ is an entry of an element of } I := \frac{2}{x \in R} | x \text{ is an entry of an element of } I := \frac{2}{x \in R} | x \text{ is an entry of an element of } I := \frac{2}{x \in R} | x \text{ is an entry of an element of } I := \frac{2}{x \in R} | x \text{ is an entry of } I := \frac{2}{x \in R} | x \text{ is an entry of } X = \frac{2}{x \in R} | x \text{ is an entry o$ 2. Suppose R is a unital commutative ring. (a) For $p \in Spec(\mathbb{R})$, let $p[x] := \{\sum_{i=0}^{n} a_i : x^i \in \mathbb{R}[x] \mid a_i \in p\}$. Prove that $p[x] \in Spec(R[x])(Hint.Use \sum_{a_i x^i} \longrightarrow \sum_{a_i + p(x^i)} x^i)$

Homework 8
Sturday, December 1, 2018 1141AM
(b) Prove that Nil (REX) = Nil(R) EX], where again
Nil(R) EX]:=
$$\frac{2}{5} \sum_{i=0}^{n} a_i \cdot x^i \in REX] | a_i \in Nil(R), n \in \mathbb{Z}^{20} g$$
.
(c) Prove that
REX]^{*} = $\frac{2}{5} a_0 + a_1 x + \dots + a_n x^n | a_0 \in \mathbb{R}^n, a_1, \dots, a_n \in Nil(R), g$.
 $n \in \mathbb{Z}^+$
3. Convience yourself that $\mathbb{Q}[I_1\mathbb{Z}] = \frac{2}{5} a_1 + \overline{2} b | a_1 b \in \mathbb{Q}_g$
is a subring of R. Let $\phi: \mathbb{Q}[I_1\mathbb{Z}] \longrightarrow M_2(\mathbb{Q}),$
 $\phi(a + \overline{1\mathbb{Z}} b) := \begin{bmatrix} a & b \\ 2b & a \end{bmatrix}$.
Prove that ϕ is a ring homomorphism, and deduce that
 $\mathbb{Q}[I_1\mathbb{Z}] \simeq \frac{2}{2} \begin{bmatrix} a & b \\ 2b & a \end{bmatrix} | a_1 b \in \mathbb{Q}_g$.
4. Let I be the ideal generated by 2 and x in $\mathbb{Z}[x]$.
Prove that I is not a principal ideal.
5. Let $\omega:= -\frac{4+i\sqrt{3}}{2}$ and $\mathbb{Z}[\omega] = \frac{2}{3}a + b\omega | a_1b \in \mathbb{Z}_g$. Convience
yourself that $\mathbb{Z}[\omega]$ is a subring of C.
(a) Let $N(a+b\omega):= (a+b\omega)(a+b\overline{\omega})$. Convience yourself that
 $N(\overline{z}, \overline{z}) = N(\overline{z}) N(\overline{z})$ and $N(a+\omega b) = a^2 - ab + b^2$.

Homework 8 Saturday, December 1, 2018 11:50 AM Prove that $\forall z_1, z_2 \in \mathbb{Z}[\omega], \exists q, n \in \mathbb{Z}[\omega] \text{ s.t.}$ $z_1 = z_2 \cdot q_1 + r$ and $N(r) < N(z_2)$. (b) Prove that Z[W] is a PID. (c) Prove that $\mathbb{Z}[\omega] = \{ \{ \pm 1, \pm \omega, \pm \omega^2 \} \}$. (This problem does not need a help, but the following picture can be helpful: 6. Let n be a square-free integer more than 3. Let $\mathbb{Z}[\sqrt{-n}] = \frac{3}{4} + \sqrt{-n} b | a, b \in \mathbb{Z}_{3}^{2}.$ (a) Prove that 2, I-n, 1± I-n are all irreducible in Z [I-n]. (b) Find an element in R which is irreducible and not prime (c) Show that Z[n-n] is not a UFD.