Lecture 03: Fixed points of an element

Wednesday, October 3, 2018

In the previous lecture are showed $G/_{G_{\infty}} \rightarrow G \cdot x$, $gG_{\infty} \mapsto g.x$

is a bijection, and $X := \{G \cdot x \mid x \in X\}$ is a partition of

χ.

Lemma. $\forall g \in G, x \in X, G_{g,x} = g G_x g^{-1}$; in particular

if |G2 <0, then |G3.x = |G2 .

 $\frac{\text{Pf.}}{\text{he}} \text{he} G_{g-x} \iff \text{he} (g \cdot x) = g \cdot x$

$$\Leftrightarrow$$
 $(g^{-1}hg) \cdot x = x$

$$\Leftrightarrow$$
 $g^{-1}hg \in G_{\chi} \Leftrightarrow h \in g G_{\chi}g^{-1}$.

Det. Suppose $G \rightarrow X$; $\forall g \in G$, $X := \{x \in X \mid g \cdot x = x\}$

(the set of fixed points of g.)

 $\underline{\text{Lemma}} \cdot \forall g, h \in G, \quad g \cdot X^h = X^{ghg^{-1}}$

 $\frac{\text{Pf.}}{\text{Ne}} \propto \text{e} \times \text{ghg}^{-1} \Leftrightarrow \text{ghg}^{-1}) \cdot x = x$

$$\leftrightarrow h \cdot (g^{-1} \cdot x) = g^{-1} \cdot x$$

$$\Leftrightarrow g^{-1} \propto \in X^h \Leftrightarrow \propto \in g \cdot X^h$$

 C_{∞} : $|X^{h}| = |X^{ghg^{-1}}| \quad \forall g, h \in G$.

Lecture 03: Lemma that is not Burnside's

Wednesday, October 3, 2018 11:08 P

Theorem. GAX, IGI, IXI < . Then

$$\left|\frac{1}{G^{\times}}\right| = \frac{1}{|G|} \sum_{g \in G} \left|\frac{1}{X^g}\right|$$

(The number of elements of the quotient space is the

average of the number of fixed points of elements of G.)

 $\frac{PP}{A}$ Let $A := \frac{2}{3}(g,x) \in G \times (g,x) = \frac{1}{3}$. Then

 $|X| = \sum_{g \in G} |X^g| = \sum_{x \in X} |G_x|$

Since y \(\mathbb{G} \cdot \times \), \(\frac{1}{4} \)

Gy is a conjugate \(\frac{1}{4} \)

of \(\mathbb{G}_{\times} \)

$$= \sum_{G \cdot x \in G} |G_x| |G \cdot x|$$

Orbit-Stabilizer = [G]

theorem = G.xe X

= 1G1 | ; and claim follows.

Def. We say $G \cap X$ is transitive if $X = G \cdot x$.

Lecture 03: Transitive actions

Wednesday, October 3, 2018 11:2

Proposition. Suppose GAX is transitive and IGI<0, 1X1>1.

 \overline{PP} . Suppose to the contrary that $X^3 \neq \emptyset$ for any $g \in G$. Hence

1×121 Age G. So by Lemma that is not Burnside's we

have
$$\left| \frac{1}{G^{X}} \right| = \frac{1}{|G|} \sum_{g \in G} |X^{g}|$$

$$= \frac{1}{|G|} \left(|X^{e}| + \sum_{g \in G} |X^{g}| \right)$$

$$\geq \frac{1}{|G|} \left(|X| + |G| - 1 \right)$$

Since $G \cap X$ is transitive, |GX| = 1; and so

 $1 \ge \frac{1}{|G|} (|X| + |G| - 1)$ which implies $|X| \le 1$; and that

is a contradiction.

Problem. Suppose G is a finite group, H & G. Prove that

Solution. G (4) by left translations transitively =>

$$\exists g \in G, (G/H) = \emptyset.$$

Lecture 03: Quotient space as a partition

Wednesday, October 3, 2018

$$(\P/H)^{g_*} = \emptyset \implies g_* \notin \bigcup_{x \in X} G_x \cdot (*)$$

$$\Leftrightarrow$$
 $g^{-1}g'g \in H$

So stabilizer of $gH = gHg^{-1}$. Hence (x) implies

points of G).

Notice that
$$x \in X \iff |G \cdot x| = 1 \cdot S_0$$

$$|X| = \sum_{G \cdot x \in X} |G \cdot x| = |X_G| + \sum_{G \cdot x \in X} |G \cdot x|$$

$$|X| = \sum_{G \cdot x \in X} |G \cdot x| = |X_G| + \sum_{G \cdot x \in X} |G \cdot x|$$

$$\Rightarrow |\chi| = |\chi^{G}| + \sum_{G : x \in X} [G : G_{x}] \quad \text{by Orbit-Stabilizer.}$$

$$x \notin \chi^{G}$$

Lecture 03: Conjugacy classes and class equation

Thursday, October 4, 2018 12

Let's study GAG by conjugation.

G-orbit of g is \qq'gq'-1 | g'eGq; this is called the

conjugacy class of g, and we denote it by Cl(g).

The stabilizer of $g = \{g \in G \mid g'g g'^{-1} = g\}$

= C (g) is called the centralizer of g.

So | Clay | = [G: Cay] by orbit-stabilizer theorem.

The set of fixed points of G = {geG | Yg'eG, g'gg'=g}

= Z(G) is called the

center of G.

By the previous equation, we have

$$|G| = |Z(G)| + \sum_{\text{representative}} [G: C_G]$$

representative

of conjugacy

classes;

not in $Z(G)$

This is called the class equation.

Lecture 03: Kernel of a group action and normal core

Thursday, October 4, 2018 12:35

Def. Suppose G OX. Kernel of this action is

$$g \in G \mid \forall x \in X, g \cdot x = x g$$

Important If $f: G \to S_X$ is the group homomorphism associated with $G \cap X$, then the kernel of the group action is ker(f); and so it is a normal subgroup of G and by the 1^{St} isomorphism theorem $G/\ker f \longrightarrow S_X$.

Let's study G GH by the left translations.

- . Action is transitive .
- . Stabilizer of gH is gHg-1.
- · Kernel of this action is \bigcap gHg⁻¹. This is called the geG normal core of H and we denote it by cor(H).

Hence G/cor(H) C S(G/H); in particular,

[G:H] [G:H]!

Lemma. Suppose $H \leq G$, $N \triangleleft G$, and $N \subseteq H$. Then $N \subseteq cor(H)$.

Lecture 03: Normal core of a subgroup

Thursday, October 4, 2018 12

$$N \subseteq gHg^{-1} \Rightarrow N \subseteq \bigcap_{g \in G_r} gHg^{-1} = \operatorname{cor}(H).$$

So cor(H) is the largest normal subgroup of G that is contained in H.

Problem. Suppose G is a finite group, $H \leq G$, [G:H] = p, where p is the smallest prime factor of |G|. Prove that $H \triangleleft G$.

Solution. By the previous discussion,

And [G: cor(H)] | IGI. Hence [G: cor(H)] | god (IGI, p!)

Since p is the smallest prime factor of IGI, gcd (IGI, p!)=p.

Therefore [G:cor(H)] p, which implies [G:cor(H)]=p.

As $cor(H) \subseteq H$ and [G:H] = p = [G:cor(H)], we deduce

Lecture 03: Normalizer

Thursday, October 4, 2018

GA & H | H \ G \ by conjugation.

Stab. of $H = \frac{3}{2}g \in G \mid g H g^{-1} = H$

is called the normalizer of H in G

and it is denoted by NG(H).

Orbit of H = { g Hg-1 | g e G}

So # of conjugates of H = [G: NC(H)].

. Notice that N_G(H) is the largest subgroup of G-which has

H as a normal subgroup.

Next we prove an extremely useful result about actions

of p-groups.

Theorem. Suppose $|G| = p^n$ where p is prime. And

 $G \cap X$, $|X| < \infty$. Then $|X| = |X^G|$ (mod p).

We will prove this in the next lecture, and then use it

to prove Sylow theorems.