Lecture 04: Group actions of p-groups
Tuesday, October 3, 2018 B25 AM
In the previous lecture we mentioned the following theorem.
Theorem. Suppose G is a group, IGI = pⁿ where p is prime,
and G(AX and IXI < 0. Then

$$IXI = IX^G I \mod q$$
).
Pf. We know $IXI = IX^G I + \sum_{G:X \in GX} [G:G_X] \cdot (I)$
 $G:X \in G_X$
 $IG:X] > 1$
 $[G:G_X] \mid GI \Rightarrow [G:G_X] \text{ is a power of } p.$
 $\Rightarrow if 1 < IG:G_X], then $p \mid [G:G_X] \cdot (II)$
By (I), (II), we deduce $IXI = IX^G I \pmod{p}$.
Theorem. Suppose G is a group, IGI=pⁿ where p is prime,
and n>o. Suppose $I \neq N \lor G$. Then $N \land Z(G) \neq 1$.
 $Pf: Consider G(AN) by congligation; notice$
 $N^G = \frac{2}{7} he N \mid \forall g \in G, gh g^{-1} = hg = N \land Z(G).$
Deduce that $[N] \equiv IN \land Z(G) I \pmod{p}$; therefore
 $p \mid IN \land Z(G) I \cdot ([NI] \mid GI \Rightarrow NI] is a power of p)$$

Lecture 04: Further properties of p-groups
Tready, October 9.2018 835AM
Grollary, Suppose G is a group,
$$|G|=p^n$$
 where p is prime,
 $n > o$. Then $Z(G_0) \neq 1$.
 $If \cdot i \neq G \leq G \Rightarrow Z(G_0) = Z(G_0) G \neq 1$.
 $If \cdot i \neq G \leq G \Rightarrow Z(G_0) = Z(G_0) G \neq 1$.
 $If \cdot i \neq G \leq G$, $|H| = q^m \leq g \Rightarrow p \mid |N_G(H)/_H|$.
 $p \mid |G/_H|$
 $If \cdot H \cap G/_H$ by left translactions.
 $\Rightarrow |G/_H| \equiv |(G/_H)^H|$ Grood p .
 $(G/_H)^H = \xi g H \mid \forall heH$, $hg H = g H \xi$.
 $= \xi g H \mid \forall heH$, $hg H = g H \xi$.
 $= \xi g H \mid \forall heH$, $g^{-1}h g \in H \xi$
 $= \xi g H \mid g^{-1}H g \subseteq H \xi$
 $= \xi g H \mid g^{-1}H g \subseteq H \xi$
 $= \xi g H \mid g^{-1}H g \subseteq H \xi$
 $= \xi g H \mid g^{-1}H g \subseteq H \xi$
 $= \xi g H \mid g^{-1}H g \in H \xi$
 $= \xi g H \mid g^{-1}H g = H \xi = N_G(H)/_H j$
and claim follows.
 $If Henrem. CCauchy) G: finite gp; p: prime; p \mid |G|.$
 $\Rightarrow \exists g \in G, ocg) = p$.
 $If \xi$. Let $X := \xi (g_1, \dots, g_p) \in G \times \dots \times G \mid g_1, \dots, g_p = e \xi$.
Notrice that $g_1, \dots, g_p = e$ implies $g_p \cdot g_1 \cdot g_2 \dots \cdot g_p = e$.

Lecture 04: Cauchy's theorem
Tuesday, October 3, 2013 852 AM
and so on;
$$3^{2}$$
 3^{2} 2^{2} cue can start from
 3^{3} any point on this circle
and the product cuill be e.
Hence $\mathbb{Z}/p_{\mathbb{Z}}$ ($+$ X by shifting the indexes. ($cohy?$)
Therefore $|X| = |X^{Z/Z}|$ ($mod p$). We notice that
 $G_{X} \dots XG \longrightarrow X$, $(g_{1}, \dots, g_{p-1}) \mapsto (g_{1}, \dots, g_{p-1}, (g_{1} \dots, g_{p-1}^{-1}))$
 p^{-1} is a bijection; and so $|X| = |G|^{p-1}$ is divisible by p.
 $\Rightarrow p \mid |X^{Z/p_{\mathbb{Z}}}| = |g(g, \dots, g)| g^{p} = e_{3}^{2}|$.
Since (e, \dots, e) is in the above set and $p \neq 1$,
 $\exists geG$, $g \neq e$ and $g^{g} = e$. Thus $o(g) = p$.
 Def . G is called a p-group if $\forall ge G$, $o(g)$ is a power
of p .
Proposition. Suppose G is a finite p-group. Then $|G| = p^{n}$.
 H th not, \exists a prime $l \mid |G| \cdot S_{0}$ by Cauchy's theorem.
 $\exists geG$, $o(g) = l$ chich contradicts the assumption. \blacksquare

Lecture 04: 1st Sylow theorem Tuesday, October 9, 2018 9:03 AM $\begin{array}{c|c} \hline \hline Theorem & G: \mbox{ finite group } \mbox{ } \Rightarrow \exists \ P \triangleleft P_2 \triangleleft \cdots \triangleleft P_m \leq G \ s.t. \\ P^m \ | \ IG| & | \ P_i \ | = p^i \ \mbox{ for } 1 \leq i \leq m. \end{array}$ Pf. We proceed by induction on i. Cauchy's theorem gives us the base case. Suppose we have already tound $P_1, ..., P_k$. If k=m, we are done. If k<m, then
$$\begin{split} & \operatorname{NG}(\mathbf{P}_{k})/\mathbf{P}_{k} \quad \text{is a finite gp} \Longrightarrow \quad \text{by Cauchy's theorem,} \\ & \operatorname{P} \left[\left(\operatorname{NG}(\mathbf{P}_{k})/\mathbf{P}_{k} \right) \right] \quad \exists g \operatorname{P}_{k} \in \operatorname{NG}(\mathbf{P}_{k})/\mathbf{P}_{k} \quad \exists g \operatorname{P}_{k} \in \operatorname{NG}(\mathbf{P}_{k})/\mathbf{P}_{k} \quad \text{s.t.} \end{split}$$
 $o\left(q P_k \right) = P \cdot$ $\langle g P_k \rangle = \frac{P_{k+1}}{P_k}$ where P_{k+1} is a subgroup of G and $P_k \lhd P_{k+1}$. Moreover |PkH/Pk | = Kg Pk> |=p; and so $|P_{kH}| = |P_{k}| \cdot p = p^{kH} \cdot$

Lecture 04: Sylow subgroups, and 2nd Sylow theorem
Theodox, October 9, 2018 910AM
Def G: timbe p-gp; pⁿ | G1, pⁿ⁺¹ / G1. Then a subgp
P of G is called a Sylow p-subgroup if IPI=pⁿ.
We let Sylp(G) be the set of all Sylow p-subgrs and

$$q:=|Syl_{F}(G)|$$
.
Theorem (2nd Sylow thm) G: finite group.
Q \leq G, Q : p-group. \implies $\exists geG, \exists Qg \subseteq P_{o}$.
P \in Sylp(G)
Pf: Q $(\rightarrow G/P)$ by the left translations. Since Q is
a p-gp, $|G/P_{o}| = |G/P_{o}^{Q}|$ Croad p) GO
Since P \in Sylp(G), p $t |G/P_{o}|$. Therefore by GO
 $(G/P_{o})^{Q} \neq \emptyset$. Suppose $gP \in (G/P_{o})^{Q}$. Then
 $\forall qeQ, qgP_{o} = gP_{o} \Rightarrow g^{-1}Qg \subseteq P_{o}$ =
Coollary. $\subseteq (\rightarrow Syl_{F}(G)$ transitively via conjugation.
Pt: $|gPg^{-1}| = |P| \Rightarrow G$ does act on Sylp(G) by
Conjugation. Let P, P'eSyl_{F}(G). Then $\exists g, g^{-1}Pg \subseteq P'$,

Lecture 04: More Sylow subgroups
Tweddy, Occuber 9, 2018 9:22 AM
and so
$$g^{d}P_{g} = P'$$
.
Cor. If $P \in Syl_{p}(G_{1})$, then $|Syl_{p}(G_{2})| = [G: N_{q}(P)]$.
Present the previous theorem,
 $|Syl_{p}(G_{1}| = \# \text{ of orgingates of } P = [G: N_{q}(P)]$.
Theorem: $\forall P \in Syl_{p}(G_{1})$, $Syl_{p}(N_{q}(P_{1})) = \S P \S$.
Presult (G), and $|P|$ is a power of p (I)
 $\cdot |N_{q}(P)/P|$ $|G/P|$ $\stackrel{\circ}{j} \Rightarrow p \nmid |N_{q}(P)/\phi|$ (II)
 $P \in Syl_{p}(G_{2}) \Rightarrow p \restriction |G/P|$ $\stackrel{\circ}{j} \Rightarrow p \restriction |N_{q}(P)/\phi|$ (II)
 $P \in Syl_{p}(G_{2}) \Rightarrow p \restriction |G/P|$ $\stackrel{\circ}{j} \Rightarrow p \restriction |N_{q}(P)/\phi|$ (II)
 $P \in Syl_{p}(G_{2}) \Rightarrow p \restriction |G/P|$ $\stackrel{\circ}{j} \Rightarrow p \restriction |N_{q}(P)/\phi|$ (II)
 $P \in Syl_{p}(G_{2}) \Rightarrow p \restriction |G/P|$ $\stackrel{\circ}{j} \Rightarrow p \restriction |N_{q}(P)/\phi|$ (II)
 $P \in Syl_{p}(N_{q}(P_{1})) = \S \Re P_{g}^{-1}| g \in N_{q}(P) \S - \S P \S$.
 $\Re mark$. $\forall \Theta \in Aut(G_{1}), \Theta(N_{q}(H)) = N_{q}(\Theta(H))$.
 $g \in \Theta(N_{q}(H)) \Leftrightarrow \Theta^{-1}(g) \in N_{q}(H) \Leftrightarrow H = \Theta^{-1}(g) H \ominus^{-1}(g)^{-1}$
 $\Leftrightarrow \Theta(H) = g \Theta(H) g^{-1} \Leftrightarrow g \in N_{q}(O(H))$.

Lecture 04: Normalizer of normalizer Tuesday, October 9, 2018 2:09 PM <u>Thm</u>. Suppose $P \in Syl_p(G)$. Then $N_q(N_q(P)) = N_q(P)$. $\underline{PP} \cdot \forall g \in G, \quad Syl_{p} (g N_{C}(P) g^{-1}) = Syl_{p} (N_{G}(g P g^{-1}))$ $= \{g P g^{-1}\}.$ So $\forall g \in N_{C}(N_{C}(P))$, $Syl_{P}(g N_{C}(P) g^{-1}) = Syl_{P}(N_{C}(P))$ $\{g_{1}, g_{2}, g_{3}, g_{3},$ Hence $g lg^{-1} = P$. Therefore $N_{q}(N_{q}(P)) \subseteq N_{q}(P)$. Since $N_{\mathcal{C}}(\mathcal{P}) \subseteq N_{\mathcal{C}}(N_{\mathcal{C}}(\mathcal{P}))$, we deduce $N_{C}(P) = N_{C}(N_{C}(P)) . \blacksquare$ In the next lecture we will prove 3rd Sylow theorem: $|S_{y}|_{p}(G)| \equiv 1 \pmod{p}$.