Lecture 05: 3rd Sylow theorem

Thursday, October 11, 2018

Thm (3rd Sylow theorem). |Sylp(G)| = 1 (mod p).

 $\frac{P}{P}$. Let $P \in Syl_p(G)$. If $P = \{1\}$, then $\left|Syl_p(G)\right| = 1$; and

there is nothing to prove. Otherwise IP.I=pk for some ket.

Consider P. A Sylp (G) by conjugation. By the main

theorem of group actions of finite p-groups,

|Sylp(G)| = |Sylp(G) (mod p). (x)

Pe Syl (G) + P = NG(P)

 \rightarrow $P_{e} \in Syl_{P}(N_{G}(P)) = 223$

 $\Leftrightarrow P_o = P$.

Hence | Sylp(G) =1; and by (x) claim follows.

Sylow theorems are extremely useful to describe possible gp

structures of a group with a given order.

Problem. Describe possible group structures of a group of order pq where p<q are primes.

Solution. Let $s_q := |Sy|_q(G)|$. Then by the 1st and 2nd Syloco

Lecture 05: Groups of order pq

Thursday, October 11, 2018

$$S_{q} \mid [G:Q] = p. \Rightarrow S_{q} = 1 \text{ or } p \end{cases} \Rightarrow S_{q} = 1 \Rightarrow Q \triangleleft G.$$

$$S_{q} = 1 \pmod{q} \quad (\text{by } 3^{rd} \text{ Sylow thm})$$

$$\begin{cases} \text{Notice } [G:Q] = p \text{ is the smallest prime} \\ \text{factor of } [G]. \text{ thence by a result we} \\ \text{proved earlier } Q \triangleleft G. \end{cases}$$

|P|=p, |Q|=q are prime $\Rightarrow P$ and Q are cyclic.

 $|P_nQ| \mid gcd(|P|,|Q|) = 1 \Rightarrow P_nQ = \{e\}.$

Lemma. H, K≤G. Then HKAK, and the following is

a bijection $H/_{HNK} \xrightarrow{\Phi} HK/_{K}$, $h(HNK) \mapsto hK$;

moreover when H and K are finite, IHKI = IHIKI.

(Think about HK/K as the set of K-orbits of the

action HK ()K.)

PP. GAK and HK·K=HK is K-invariant => HKAK.

• $\Phi(h_1(H \cap K)) = \Phi(h_2(H \cap K)) \Rightarrow h_1 K = h_2 K \Rightarrow h_2^{-1} h_1 \in K$

 \Rightarrow $\int_{2}^{-1} h_{i} \in H \cap K \Rightarrow h_{i}(H \cap K) = h_{2}(H \cap K)$

 $\forall h \in H, k \in K, hk K = hK = \Phi(h(HnK)) \Rightarrow \Phi$ is onto.

Lecture 05: Groups of order pq

Thursday, October 11, 2018 1:59 PI

By Lamma that is not Burnside's,

For kekileg, (HK) = & (left trans. action); and

(One does not need the above lemma; since the action is

free, any K orbit has IKI-many elements; and K-orbits

form a partition; hence |HK = |HK/K| |K|.)

By the above lemma, $|PQ| = \frac{|P||Q|}{|PQ|} = pq$; and so

$$PQ = G$$
. Suppose $P = \{e,g,...,g^{P-1}\}$ and $Q = \{e,h,...,h^{P-1}\}$.

$$o(h) = o(ghg^{-1}) = o(h^{k}) = \frac{o(h)}{gcd(och), k}, gcd(och), k)=1.$$

Notice that
$$g^2hg^{-2} = gh^kg^{-1} = (ghg^{-1})^k = (h^k)^k = h^{2q}$$

Inductively gh hgm=h; in particular, h=ghgP=h.

Lecture 05: Groups of order pq

Thursday. October 11. 2018

Hence $k \equiv 1 \pmod{o(h)} \Rightarrow k \equiv 1 \pmod{q}$. Therefore

ord $k \mid p \rightarrow \text{ ord } k = 1 \text{ or } p$.

the multiplicative order of k modulo q;

atternatively, this is the order of k in $(\mathbb{Z}/_{q}\mathbb{Z})^{x}$ where

 $(\mathbb{Z}/q\mathbb{Z})^{\times} = \{a+q\mathbb{Z} \mid a+q\mathbb{Z} \text{ has a multiplicative inverse}\}.$ in $\mathbb{Z}/q\mathbb{Z}$

In $\mathbb{Z}/q\mathbb{Z}$ [Recall, $(\mathbb{Z}/q\mathbb{Z})^x = \{a+q\mathbb{Z} \mid 0 < a < q, gcd(a,q)=1\}$.]

So if $p \nmid q-1$, then ord k = 1; hence k = 1 and q + 1 and

o(gh) = 1.c.m (o(g),och) = pq = 1G1.

Thus G is cyclic.

Summary. |G|=pq, p<q, p+q-1 -> G is cyclic.

Later you will prove:

Thm. gcd (n, +(n))=1 (any group of order n is cyclic.

Lecture 05: Groups of order p(p-1) and p(p+1)

Thursday, October 11, 2018 2:21 PN

Problem. Suppose G is a group of order p (p-1). Prove that

G has a normal subgroup of order p.

Pf. Let sp:= | Sylp(G) | and P∈ Sylp(G). Then

$$S_{p} = [G:N_{G}(P)] | [G:P] = p-1 \} \Rightarrow S_{p} = 1.$$

$$8p \equiv 1 \pmod{p}$$

$$\Rightarrow g P g^{-1} = P \Rightarrow P \triangleleft G. \blacksquare$$

J => 8ylp(G) = {P3.

Problem. Suppose G is a group of order p(p+1). Prove that

G has a normal subgroup of order either p or p+1.

Solution. Let 3p := |Sylp(G)|, and PESylp(G). Then

$$S_p = [G: N_G(P)] | [G:P] = p+1 \rightarrow S_p = 1 \text{ or } p+1$$

If $S_p=1$, then $Syl_p(G)=\{P\}$; and so $P \triangleleft G$.

Suppose Sp=p+1 and Sylp(G) = {P1, ..., P+1}.

Then P; s are cyclic groups of order p, Hence Yg & P; 12e3,

ag)=p. Hence i+j, PinPj= zeg. Therefore

Lecture 05: Groups of order p(p+1)

Thursday, October 11, 2018 3:16 P

 $\begin{aligned} \left| \begin{array}{c} P_{i} \\ U \\ | U \\$

Claim 1. H= & geG | og = p&.

Pf of Claim 1. geG\H → ∃i, geP;\&es → ocg)=p

 $o(g) = P \Rightarrow \langle g \rangle \in Syl_p(G) \Rightarrow \exists i, \langle g \rangle = P_i \Rightarrow g \in P_i.$

Cor. of Claim 1. $\forall g \in G$, $g + g^{-1} = H$ as $o(ghg^{-1}) = o(h)$

for any h.

[So it is enough to show H is a subgroup. Here is the

plan; suppose he H \ {eg, we will show C(h) = H. This

will be done by showing 196(h) = p+1; this in turn will

be handled by showing | Cl(h) = p.]

Claim 2. Suppose $P_1 = \{e, g, g^2, \dots, g^{-1}\}$. Then for $0 \le i < j < p$ $g'hg^{-1} \neq g'hg^{-1}, \text{ for } h \in H \setminus \{e\}\}.$

Pf of Claim 2. If not, gihgi=ghgi. Then gibh=hgit;

and so $h \in C_{\mathcal{C}}(\langle g^{(-1)} \rangle) = C_{\mathcal{C}}(\langle g \rangle) = C_{\mathcal{C}}(P_1) \subseteq \mathcal{N}_{\mathcal{C}}(P_1)$.

Lecture 05: Groups of order p(p+1)

Thursday, October 11, 2018 3:

 $S_{p} = [G: \mathcal{N}_{G}(P_{1})] \Rightarrow |\mathcal{N}_{G}(P_{1})| = p = |P_{1}| \Rightarrow \mathcal{N}_{G}(P_{1}) = P_{1}.$

And so he P_ which contradicts he H Zes.

Claim 3. $H = \{1, ghg^{-1}, ..., g^{-1}hg^{-(p-1)}\} = Cl(h)$

74 of Claim 3. H\ {eg is closed under conjugation. So

 $h \in H \setminus 2e\xi \text{ implies } Cl(h) \subseteq H \setminus 3e\xi$ (I)

 $\Rightarrow \xi h, ghg^{-1}, ..., g^{(p-1)} h g^{-(p-1)} \xi \subseteq Cl(h) \subseteq H \setminus \xi e \xi ._{\xi}$

By claim 2, $|\xi h, ghg^{-1}, ..., g^{(p-1)}h g^{-(p-1)}\xi| = p = |H \setminus \xi e \xi|$

H\ {e} = {h,ghg-1,...,gh-1)hg-(p-1)}. (I)

Hence H\ges Cl(h). (III)

By (I), (II), Cl(h) = H ref; and claim follows.

Finishing proof. By Claim 3, | Cl(h) = p. Hence

[G: Cg(h)]=p, which implies |Cg(h)|=p+1. Therefore

Y K∈CG(h), och) ≠ P; and so G(h) ⊆ H. As

|C_(h)|= p+1= |H1, we conclude H=C_(h) is a subgp.

Hence it is a normal subgp of order p+1.

Lecture 05: Groups of order p(p+1)

Thursday, October 11, 2018 3:41

Remark. As part of your HW, you will prove that if a group G of order p(p+1) does not have a normal subgr of order p, then $p=2^n-1$ is a Mersenne prime. In fact, in this case $G\simeq F_n^\times\times F_n$ where F_n is a finite field of order 2^n . (We will learn about finite fields in math 200 b.)