In the previous lecture we learned how Sylow theorems can help us find non-trivial normal subgroups. How can we go further? More precisely we could like to know having N and G / N if we con parametrize all the possibilities of G. This is a hard question; but we will learn some tools to deal with this problem.
Def.. Suppose $G_{1} \xrightarrow{\phi_{1}} G_{2} \xrightarrow{\phi_{2}} \ldots \xrightarrow{\Phi_{n-1}} G_{n}$ is a sequence of groups and group homomorphisms. This is called an exact sequence if In $\phi_{i}=$ er ϕ_{i+1} for $1 \leq i \leq n-1$.

- An exact sequence of the form $1 \rightarrow G_{1} \rightarrow G_{2} \rightarrow G_{3} \rightarrow 1$ is called a Short Exact Sequence (SES).
. We say the SES $1 \rightarrow G_{1} \xrightarrow{\phi_{1}} G_{2} \xrightarrow{\phi_{2}} G_{3} \rightarrow 1$
splits if $\exists \Psi: G_{3} \rightarrow G_{2}$ sit. $\phi_{2} \odot \Psi=i d . G_{G_{3}}$ and we conte

$$
1 \rightarrow G_{1} \xrightarrow{\phi_{1}} G_{2} \underset{\underset{4}{4}}{\stackrel{\phi_{3}}{\longrightarrow}} G_{3} \rightarrow 1
$$

is a commutative diagram.

- We say $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ is a SES homomorphism if

Lecture 06: SES
Tuesday, October 16, 2018 8:31 AM
$1 \rightarrow G_{1} \xrightarrow{\Phi_{1}} G_{2} \xrightarrow{\Phi_{2}} G_{3} \rightarrow 1$ is a commutative $\left.\theta_{1} \downarrow, 2 \theta_{2} \downarrow, 2 \theta_{3}\right\rfloor$
$1 \rightarrow G_{1}^{\prime} \rightarrow C_{2}^{\prime} \rightarrow G_{3}^{\prime} \rightarrow 1$ diagram (this
means following arrows gives you the same value no matter which path you take.) ; and each row is a SES.

Similarly we can define an isomorphism $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ of SES.
A few observations:

- $1 \rightarrow H \xrightarrow{\phi} G$ is an exact sequence

$$
\Uparrow
$$

ger $\phi=1 \Leftrightarrow \phi$ is infective.

- $G \xrightarrow{\phi} K \xrightarrow[\rightarrow]{\longrightarrow}$ is an exact sequence
§
$\operatorname{Im} \phi=$ ker $\phi^{\prime}=k \Leftrightarrow \phi$ is surjective.
Lemma. Suppose $1 \rightarrow G_{1} \xrightarrow{\phi_{1}} G_{2} \xrightarrow{\phi_{2}} G_{3} \rightarrow 1$ is a SES.
Then $\phi_{1}\left(G_{1}\right) \triangleleft G_{2}$ and the above SES is isomorphic to $1 \rightarrow \Phi_{1}\left(G_{1}\right) \xrightarrow{i} G_{2} \xrightarrow{\pi} G_{2} / \$_{1}\left(G_{1}\right) \longrightarrow 1$ where $i(g)=g$ and $\pi(g)=g \phi_{1}\left(G_{1}\right)$.

Pf. $\phi_{1}\left(G_{1}\right)=$ er $\Phi_{2} \Rightarrow \Phi_{1}\left(G_{1}\right) \triangleleft G_{2}$. By the $1^{t t}$ isomorph . theorem $\Phi_{2}: G_{2} / \operatorname{ker} \Phi_{2} \xrightarrow{\sim} / m \Phi_{2}$,

$$
\Phi_{2}\left(g \operatorname{ker} \Phi_{2}\right):=\phi_{2}(g)
$$

And $\operatorname{lm} \phi_{2}=G_{3}$.

Proposition. A SE.S. $1 \rightarrow N \rightarrow G \rightarrow G / N \rightarrow 1$ splits if and only if $\exists H \leq G$ sit. $H \cap N=1$ and $H N=G$; in this case $H \simeq G / N$.

Pf. \Leftrightarrow Suppose $1 \rightarrow N \xrightarrow{i} G \underset{\rightarrow}{G /} /{ }^{\rightarrow} \rightarrow 1$ splits. Then $\exists \psi: G / N \rightarrow G$ st. $\pi_{0} \psi=i d . G / N$; this means for any $g \in G, \quad \Psi(g N) N=g N$

Let $H:=4(G / N) \leq G$. We show that H has the desired
properties.

- $H \cap N=1$. Suppose $g \in H \cap N$. Then $\exists g^{\prime} \in G$ st.

$$
g=\psi\left(g^{\prime} N\right) . B y(1), \Psi\left(g^{\prime} N\right) N=g^{\prime} N
$$

Hence $g N=g^{\prime} N$; as $g \in N$, we deduce $g^{\prime} \in N$.
Therefore $g=\psi\left(g^{\prime} N\right)=\psi(N)=1$.

- $G=H N$. Suppose $g \in G$. Then by (1)
$g \in \psi(g N) N \subseteq H N$; and so $G=H N$.
Notice. $\mathrm{H} / \mathrm{HnN}^{\sim} \xrightarrow{ } \mathrm{HN} / \mathrm{N}$

$$
h\left(H_{n} N\right) \mapsto h N
$$

Pf. Let $\pi: G \rightarrow G / N$ be the natural quotient map. By the $1^{\text {st }}$ isomorphism theorem applied to $\left.\pi\right|_{H}: H \rightarrow G / N$, we get $\left.\bar{\pi}\right|_{H}: H / \operatorname{ker}\left(\left.\pi\right|_{H}\right) \rightarrow \operatorname{lm}\left(\left.\pi\right|_{H}\right),\left.\bar{\pi}\right|_{H}\left(h \operatorname{ker}\left(\left.\pi\right|_{H}\right)\right):=$ $\left.\pi\right|_{H}(h)=h N$
is an isomorphism; $\operatorname{ker}\left(\left.\pi\right|_{H}\right)=H \cap \operatorname{ker} \pi=H \cap N ;$

$$
\ln \left(\left.\pi\right|_{H}\right)=\pi(H)=H N / N
$$

Lecture 06: Split SES
Friday, October 19, 2018 1:24 AM
By the above notice, $G / N=H N / N \simeq H / H \cap N$.
\Leftrightarrow By the above argument
$\bar{\pi}: H \rightarrow G / N, \bar{\pi}(h):=h N$ is an isomorphism when $H \cap N=1$ and $G=H N$. Let $\psi:=(\bar{\pi})^{-1}$; and so $\psi: G / N^{\sim} \xrightarrow{\sim} H, \psi(h N)=h$ for any $h \in H$.

Since $G=H N$, for $g \in G, \exists h \in H$ st. $g N=h N$.
Hence $\Psi(g N) N=\Psi(h N) N=h N=g N$.
Therefore $\pi \cdot \psi=$ id. G / N; and $1 \rightarrow N \rightarrow G \rightarrow G / N \rightarrow 1$ splits.

Next we see how one can describe possible group structures of G if $1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$ is a split S.E.S. and N and H are given. Motivated by the previous proposition, we consider the following case:
$N \triangleleft G, H \leq G, H \cap N=1, H N=G$.
Claim $H \times N \xrightarrow{\theta} G,(h, n) \mapsto h n$ is a bijection.

Lecture 06: Semi-direct product

Pf of claim. Since $H N=G, \theta$ is surjective.

$$
\begin{gathered}
\theta\left(h_{1}, n_{1}\right)=\theta\left(h_{2}, n_{2}\right) \Rightarrow h_{1} n_{1}=h_{2} n_{2} \Rightarrow h_{1}^{-1} h_{2}=n_{1} n_{2}^{-1} \in H \cap N \\
\Rightarrow h_{1}^{-1} h_{2}=1 \text { and } n_{1} n_{2}^{-1}=1 \Rightarrow h_{1}=h_{2} \text { and } n_{1}=n_{2}
\end{gathered}
$$

and so θ is infective. a
So as a set G can be identified with $H \times N$. Can we understand multiplication of G under this identification?

$$
\begin{aligned}
& \left(h_{1}, n_{1}\right) \cdot\left(h_{2}, n_{2}\right):=\left(h_{1} h_{2}, c\left(h_{2}^{-1}\right)\left(n_{1}\right) n_{2}\right) \\
& h_{h_{1} n_{1}}^{\downarrow} \cdot h_{h_{2} n_{2}}^{\downarrow}=\underbrace{h_{1} h_{2}}_{\text {in } H} \underbrace{\underbrace{h_{2}^{-1} n_{1} h_{2}}_{\text {in }} \cdot n_{2}}_{\text {in } N} \\
& c: H \rightarrow \operatorname{Aut}(N), c(h)(n):=h_{n} h^{-1} \text {. }
\end{aligned}
$$

Def. / Prop. For $f \in \operatorname{Hom}(H, \operatorname{Aut}(N))$, let

$$
\left(h_{1}, n_{1}\right) \cdot\left(h_{2}, n_{2}\right):=\left(h_{1} h_{2}, f\left(h_{2}^{-1}\right)\left(n_{1}\right) n_{2}\right) \text {. Then }(H \times N, \cdot)
$$

forms a group. Ht is called a semi-direct product of H and N. It is denoted by $H \ltimes_{f} N$ or simply $H X N$.

Lecture 06: Semi-direct product
Friday, October 19, 2018 1:52 AM
Notice

$$
\begin{aligned}
& (h, n) \mapsto h \\
1 \rightarrow & N \rightarrow H\left(X_{f} N \leftrightarrow H \rightarrow 1\right. \\
& n \mapsto(1, n) \\
& (h, 1) \leftrightarrow h
\end{aligned}
$$

is a split S.E.S.; and the above argument gives us
Theorem. Suppose $1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$ is a split S.E.S.. Then $\exists f \in \operatorname{Ham}(H, A u t N), \theta$ sit.

Remark. Suppose G is finite, $N \varangle G, H \leq G, N \cap H=1$.
Then it is enough to know $|H|=|G / N|$ to deduce that G is isomorphic to a semi-direct product of H and N. Why?

$$
|H N / N|=|H / H \cap N|=|H|=|G / N| \Rightarrow|G|=|H N|
$$

$\Rightarrow G=H N$. Hence $1 \rightarrow N \rightarrow G \rightarrow G / N \rightarrow 1$ splits.
And so $G \simeq H x_{f} N$ for some f.

