Two important observations:

- If $f \in \operatorname{Hom}(H, A n t(N))$ is the trivial homomorphism (that means $\left.f(h)=i d_{N} \forall h \in H\right)$, then $H X_{f} N=H \times N$:

$$
\begin{aligned}
\left(h_{1}, n_{1}\right) \cdot\left(h_{2}, n_{2}\right) & =\left(h_{1} h_{2}, f\left(h_{2}^{-1}\right)\left(n_{1}\right) n_{2}\right) \\
& =\left(h_{1} h_{2}, n_{1} n_{2}\right)
\end{aligned}
$$

- If $f \in \operatorname{Hom}(H, \operatorname{Aut}(N))$ is non-trivial, then $H x_{f} N$ is not abelian;
since f is not trivial, $\exists h \in H, n \in N$ st. $f(h)(n) \neq n$.
Then $(h, 1)(1, n)=(h, n)$

$$
(1, n)(h, 1)=\left(h, f\left(h^{-1}\right)(n)\right) .
$$

- Let G be a group of order $p q$ where $p<q$ are prime. We have proved that $\exists Q \unlhd G||Q|=q$, $\exists P \leq G,|P|=p$. And so $G / Q \simeq \mathbb{Z} / P \mathbb{Z} \simeq P$, which implies there is a split S.E.S. $1 \rightarrow \mathbb{Z} q_{\mathbb{Z}} \rightarrow G \rightarrow \mathbb{Z} / \mathbb{Z} 1$.

And so $G \simeq \mathbb{Z} / p \mathbb{Z} X_{f} \mathbb{Z} / q \mathbb{Z}$ for some $\operatorname{f} \in \operatorname{Hom}\left(\mathbb{Z} / \mathbb{Z}, \operatorname{Aut}\left(\mathbb{Z} / q_{\mathbb{Z}}\right)\right)$.

Ex. Ant $(\mathbb{Z} / n \mathbb{Z}) \simeq(\mathbb{Z} / n \mathbb{Z})^{x}$, where $\theta_{a}(x+n \mathbb{Z}):=a x+n \mathbb{Z}$

$$
\theta_{a} \leftrightarrow a+n \mathbb{Z}
$$

(Outline of pf. $\theta(\bar{I})$ is a generator of $\mathbb{Z} / n \mathbb{Z}$; so $o(\theta(\overline{1}))=n$ which implies $\operatorname{gcd}(\theta(\overline{1}), n)=1$. Hence $\left.\theta(\overline{1}) \in(\mathbb{Z} / n \mathbb{Z})^{x}.\right)$

Ex. $\left(\mathbb{Z} / q_{\mathbb{Z}}\right)^{x} \simeq \mathbb{Z} /(q-1) \mathbb{Z}$ if q is prime.
(This is true for any finite field as we will learn later.) So we need to understand $\operatorname{Ham}(\mathbb{Z} / p \mathbb{Z}, \mathbb{Z} /(q-1) \mathbb{Z})$.
Claim. If $p \nmid q-1$, then $\operatorname{Ham}(\mathbb{Z} / p \mathbb{Z}, \mathbb{Z} /(q-1) \mathbb{Z})=0$;
. If $p \mid q-1$, then there are non-trivial elements in $\operatorname{Hom}\left(\mathbb{Z} / \mathbb{P}_{\mathbb{Z}}, \mathbb{Z} /(q-1) \mathbb{Z}\right)$.
Pf of Claim. $\forall f \in \operatorname{Hom}(\mathbb{Z} / p \mathbb{Z}, \mathbb{Z} /(q-1) \mathbb{Z})$, $o(f(1+p \mathbb{Z})) \mid \operatorname{gcd}(p, q-1)$. So, if $p \nmid q-1, f$ is trivial.

Lecture 07: Groups of order pg
Friday, October 19, 2018 8:41 AM
If $p \mid q-1$, then $\frac{q-1}{p}+(q-1) \mathbb{Z}$ is an element of order p and so $f: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Z} /(q-1) \mathbb{Z}, \quad f(a+p \mathbb{Z})=a\left(\frac{q-1}{p}\right)+(q-1) \mathbb{Z}$ is a nontrivial group homomorphism.

Corollary. (a) If $p \not q q-1$, then any group of order $p q$ is cyclic.
(b) If $p / q-1$, then there is a non-abelian gp of ardor pg.

If (a) $G \simeq \mathbb{Z} / p_{\mathbb{Z}} x_{p} \mathbb{Z} / q \mathbb{Z}=\mathbb{Z} / p_{\mathbb{Z}} \times \mathbb{Z} / q \mathbb{Z} \simeq \mathbb{Z} / p_{q \mathbb{Z}}$

(b) \exists a nontrivial $f_{\in} H$ am $\left(\mathbb{Z} / p \mathbb{Z}, A n t\left(\mathbb{Z} / q_{\mathbb{Z}}\right)\right)$ and so $\mathbb{Z} / p \mathbb{Z} X_{f} \mathbb{Z} q_{\mathbb{Z}}$ is non-abelian.
Next we will mention Schur- Zassenhaus theorem which is a strong tool to show a S.E.S. splits.

Lecture 07: Schur-Zassenhaus theorem

Schur-Zassenhaus Theorem. A S.E.S.
(*) $\quad 1 \rightarrow N \rightarrow G \rightarrow H \rightarrow 1$
splits if $\operatorname{gcd}(|N|,|H|)=1$.
In the lecture we will make a few reductions; and in your HW assignment you will finish the proof.

Step 1. It is enough to prove the following:
Suppose $N \triangleleft G, \operatorname{ged}(|N|,|G / N|)=1$. Then $\exists H \leq G$

$$
\text { st. }|H|=|G / N| \text {. (皿) }
$$

Pf of Step 1. For a given S.E.S. as in (*), $\exists N^{\prime} \varangle G$ st.

And so $|N|=\left|N^{\prime}\right|,|H|=\left|G / N^{\prime}\right|$, which implies $\operatorname{gcd}\left(\left|N^{\prime}\right|,|G / N|\right)=1$. By $(\not), \exists H^{\prime} \leq G$ sit. $\left|H^{\prime}\right|=\left|G / N^{\prime}\right|$. Since $\operatorname{gcd}\left(\left|N^{\prime}\right|,\left|H^{\prime}\right|\right)=1$, $N^{\prime} \cap H^{\prime}=1$. And so $1 \rightarrow N^{\prime} \rightarrow G \rightarrow G / N_{N} \rightarrow 1$ splits; which implies (*) splits. (why?)

Lecture 07: Schur-Zassenhaus theorem

So we will focus on proving the statement in the blue box; and we proceed by strong induction on $|G|$. We present proof in a backward fashion by making a few reductions and get to the case where N is abelian.

Step 2. For proving the strong induction step we can further assume that N is a minimal normal subgroup.
pt. of step 2. Suppose N is not a minimal normal subgp.
Then $\exists 1 \neq N_{0} \not \subset N$ st. $N_{0} \triangleleft G$.
Chin. $N / N_{0} \triangle G / N_{0}$ satisfy conditions of $(*)$.
Pf of Claim.

$$
\left.\begin{array}{l}
\left|N / N_{0}\right|||N| \\
{\left[G / N_{0}: N / N_{0}\right]=[G: N]} \\
\operatorname{ged}(|N|,[G: N])=1
\end{array}\right\} \Rightarrow \operatorname{gcd}\left(\left|N / N_{0}\right|,\left[G / N_{0}: N / N_{0}\right]=1 .\right.
$$

By the above claim, $\left|G / N_{0}\right|<|G|$, and strong induction hypothesis, $\exists \bar{H} \leq G / N_{0}$ st. $|\bar{H}|=\left[G / N_{0}: N / N_{0}\right]=\left|G / N_{N}\right|$. Therefore $\exists \tilde{H} \leq G$ st. $\bar{H}=\tilde{H} / N_{0}$. Hence $\left|\tilde{H} / N_{0}\right|=|G / N|$. As $\left|N_{0}\right|<|N|,|\tilde{H}|<|G|$.

Lecture 07: Schur-Zassenhaus theorem
Friday, October 19, 2018 9:30 AM
Claim $N_{0} \triangleleft \tilde{H}$ satisfy conditions of ((x).
Pf of Claim.

$$
\left.\begin{array}{c}
\left|N_{0}\right|||N| \\
\left|\tilde{H} / N_{0}\right|=|G / N| \\
\operatorname{gcd}(|N|,|G / N|)=1
\end{array}\right\} \Rightarrow \operatorname{gcd}\left(\left|N_{0}\right|,\left|\tilde{H} / N_{0}\right|\right)=1 .
$$

By the above claim, $|\tilde{H}|<|G|$, and the strong induction hypothesis, $\exists H \leq \tilde{H} \leq G$ sit. $|H|=\left|\tilde{H} / N_{0}\right|=|G / N|$.
Step 3. Far proving the strong induction step we can further assume that N is a minimal normal subgroup and a $p=$ group.

Pf of Step 3. Suppose $p||N|$ and N is not a p-group.
Let $\left.P \in S_{y}\right|_{P}(N)$. Since $1 \neq P \lesseqgtr N$ and N is a minimal normal subs of $G, P \notin G$; and so $N_{G}(P) \varsubsetneqq G$. By Frattini's argument that you proved in your HW assignment, $G=N_{G}(P) N$. And so

$$
G / N=N_{G}(P) N / N \simeq N_{G}(P) /_{N_{G}}(P) \cap N
$$

Lecture 07: Schur-Zassenhaus theorem

Claim. $N_{G}(P) \cap N \triangleleft N_{G}(P)$ satisfy conditions in (X).
Pf of Claim. $\quad\left|N_{G}(P) \cap N\right|||N|\} \Rightarrow \operatorname{gcd}\left(\left|N_{G}(P) \cap N\right|\right.$,

$$
\left.\left|\begin{array}{c|c}
\mid N_{G}(P) / N_{G}(P) \cap N \\
\operatorname{gcd}(|N|,|G / N|)=1
\end{array}\right| \quad\left|G_{N}\right| \right\rvert\,
$$

By the above claim, $\left|N_{C}(P)\right|\langle | G \mid$, and the strong induction hypothesis, $\exists H \leq N_{G}(P) \leq G$ st.

$$
|H|=\left|N_{G}(P) / N_{G}(P) \cap N\right|=|G / N| .
$$

Step 4. For proving the strong induction step we can further assume that N is a minimal normal subgroup, a p-group, and abelian.

Pf of Step 4. The following lemma implies this step.
Lemma. $N \triangleleft G \Rightarrow Z(N) \triangleleft G$.
Pf of Lemma. $\forall g \in G, g Z(N) g^{-1}=Z\left(g N g^{-1}\right)=Z(N)$.
(In your HW, you will learn about characteristic subgps and show $\left.K \ll_{\text {char }} N, N \triangleleft G \Rightarrow K \triangleleft G \cdot\right)$

Lecture 07: Schur-Zassenhaus theorem
Corollary. If N is a minimal normal subgp of G and N is a finite p-gray, then N is abelian.

Pf of Corollary. Since $1 \neq N$ is a finite p-group, $1 \neq Z(N)$.
By the previous lemma, $Z(N) \triangleleft G$. By the minimality of N, we get that $N=Z(N)$.

In your HW assignment you will learn about basics of cohomology and prove the abelian case of Schur-Zassenhaus theorem; and thereby finishing its proof.

So far to understand structure of a group, we tried to find a normal subgroup N, and having groups N and G / N tried to describe G. What if G does not have a nontrivial normal subgroup? Such a group is called a simple group. In the next few lectures we will work with the symmetric group S_{n}; and show it has a subgroup of index 2 that is simple (if $n \geq 5$).

Lecture 07: Symmetric group
Friday, October 19, 2018 3:07 PM
As we have pointed out earlier, $S_{n} \curvearrowright\{1,2, \cdots, n\}$. And so for any $\sigma \in S_{n},\langle\sigma\rangle \curvearrowright\{1, \ldots, n\}$. The set of orbits gives us a partition of $[1 \cdots n]:=\{1,2, \ldots, n\}$.

Def. Let $F_{i x}(\sigma):=\{i \in[1 \ldots n] \mid \sigma(i)=i\}$, and

$$
\operatorname{supp}(\sigma):=[1 \ldots n] \backslash \text { Fix }(\sigma) .
$$

Ex. $\quad \operatorname{supp}(i d)=.\varnothing$; or $|\operatorname{supp}(\sigma)| \neq 1$.
Observation. $\sigma\left(F_{i x}(\sigma)\right)=F_{i x}(\sigma)$ and so $\sigma(\operatorname{Supp}(\sigma))=\operatorname{Supp}(\sigma)$.
And so $\operatorname{supp}(\sigma)$ is invariant under $\langle\sigma\rangle$.
We can make a directed graph via the action of σ;

Since σ is a bijection,
 any vertex has an outgoing deg. $1 ;$ and an ingoing deg. 1. So the undirected graph is a 2 -regular graph. One can see that such a graph is a disjoint union of cycles.
So on each orbit σ acts like a "cycle".

Lecture 07: Cycles; disjoint support
Friday, October 19, 2018 3:20 PM
Def. $\sigma \in S_{n}$ is called a cycle of length m if $\exists i_{1}, \ldots, i_{m} \in[1 \cdots n]$ st. $\sigma\left(i_{1}\right)=i_{2}, \sigma\left(i_{2}\right)=i_{3}, \ldots, \sigma\left(i_{m}\right)=i_{1}$ and
$\sigma(j)=j$ if $j \in[1 \cdots n] \backslash\left\{i_{1}, \ldots, i_{m}\right\}$. In particular, if $m \neq 1$, then $\operatorname{supp} \sigma=\left\{i_{1}, \ldots, i_{m}\right\}$. We denote it by $\left(\begin{array}{llll}i_{1} & i_{2} & \cdots & i_{m}\end{array}\right)$.

Observation. The directed graph attached to $\left(i_{1} i_{2} \cdots i_{m}\right)$ consists of $n-m$ self-loops and

Lemma. Suppose $\operatorname{supp}(\sigma) \cap \operatorname{supp}(\tau)=\varnothing$. Then $\sigma \tau=\tau \sigma$.
Pf.: $i \in \operatorname{Supp}(\sigma) \Rightarrow \sigma(i) \in \operatorname{Supp}(\sigma) \Rightarrow i, \sigma(i) \in$ Fix τ

$$
\Rightarrow\left\{\begin{array}{l}
\tau(i)=i \\
\tau(\sigma(i))=\sigma(i)
\end{array} \Rightarrow \tau(\sigma(i))=\sigma(i)=\sigma(\tau(i) .\right.
$$

- Similarly for $i \in \operatorname{Supp}(\tau),(\tau \cdot \sigma)(i)=(\sigma \cdot \tau)(i)$.
- If i\& $\operatorname{supp} \sigma \cup \operatorname{supp} \tau$, then $i \in F i x \sigma \cap$ Fix τ; and so

$$
\tau_{0} \sigma(i)=i=\sigma_{0} \tau(i) .
$$

Next we will show

Lecture 07: Disjoint supports
Friday, October 19, 2018
4:01 PM
Lemma. Suppose $\operatorname{supp}\left(\sigma_{i}\right) \cap \operatorname{Supp}\left(\sigma_{j}\right)=\varnothing$ if $i \neq j$. Then
(a) $\left.\sigma_{1} \sigma_{2} \cdots \sigma_{m}\right|_{\text {Supp } \sigma_{i}}=\left.\sigma_{i}\right|_{\text {Supp } \sigma_{i}}$;
(b) $\operatorname{supp}\left(\sigma_{1} \sigma_{2} \cdots \sigma_{m}\right)=\bigcup_{i=1}^{m} \operatorname{supp} \sigma_{i}$.
(we will continue next time.)

