Lecture 08: Product of disjoint permutations

At the end of the previous lecture we stated the following lemma:
Lemma. Suppose $\tau_{i} \in S_{m^{\prime}} \operatorname{supp} \tau_{i} \cap \operatorname{supp} \tau_{j}=\varnothing$ if $i \neq j$.
Then $\left.\left(\tau_{1} \cdots \tau_{n}\right)\right|_{\operatorname{supp} \tau_{i}}=\left.\tau_{i}\right|_{\operatorname{supp}} \tau_{i}$; and

$$
\operatorname{supp}\left(\tau_{1} \ldots \tau_{n}\right)=\bigcup_{i=1}^{n} \operatorname{supp} \tau_{i}
$$

In particular $\left.\left(\tau_{1} \cdots \tau_{n}\right)\right|_{\text {Supp } \tau_{i}} \in S_{\text {Supp } \tau_{i}}$.
Pf Supp $\tau_{i} \subseteq \bigcup_{j \neq i} F_{i x} \tau_{j}$ as τ_{j} 's are disjoint.
Since $\tau_{i}\left(\operatorname{supp} \tau_{i}\right)=\operatorname{supp} \tau_{i}, \forall x \in \operatorname{supp} \tau_{i}$

$$
\tau_{i}\left(\tau_{i+1} \cdots \tau_{n}\right)(x)=\tau_{i}(x) \text { and } \tau_{1} \cdots \tau_{i-1}\left(\tau_{i}(x)\right)=\tau_{i}(x)
$$

And so $\tau_{1} \ldots \tau_{n}(x)=\tau_{i}(x)$. Therefore $\operatorname{supp} \tau_{i} \subseteq \operatorname{supp} \tau_{i} \cdots \tau_{n}$ Thus $\operatorname{supp} \tau_{i} \ldots \tau_{n}=\bigcup_{i=1}^{n} \operatorname{supp} \tau_{i}$.

We also deduce $\left(\tau_{1} \ldots \tau_{n}\right)\left(\operatorname{Supp} \tau_{i}\right)=\tau_{i}\left(\operatorname{Supp} \tau_{i}\right)$

$$
=\operatorname{Supp} \tau_{i} ;
$$

and so $\left.\left(\tau_{1} \cdots \tau_{n}\right)\right|_{\text {Supp }} \in \tau_{i} \in S_{\text {supp }} \tau_{i}$
Corollary. Suppose $\operatorname{supp} \tau_{i} \cap \operatorname{supp} \tau_{j}=\varnothing$ if $i \neq j, X \subseteq[1 \cdots n]$, and $|x| \geq 2$. Then X is an orbit of $\left\langle\tau_{1} \ldots \tau_{n}\right\rangle$ if and only if

Lecture 08: Product of disjoint permutations
X is an orbit of τ_{i} for same i.
Pf. Suppose X is the orbit of $x \in X$. Since $|x| \geq 2$, $x \in \operatorname{Supp} \tau_{1} \cdots \tau_{n}=\bigsqcup_{i=1}^{n} \operatorname{supp} \tau_{i}$. So $\exists i$ s.t. $x \in \operatorname{Supp} \tau_{i}$.
by the previous
Lemma
Again by the previous lemma $\left\langle\left.\left(\tau_{1} \ldots \tau_{n}\right)\right|_{\operatorname{Supp} \tau_{i}}\right\rangle=\left\langle\left.\tau_{i}\right|_{\text {Supp } \tau_{i}}\right\rangle$. Hence $\left\langle\tau_{1} \cdots \tau_{n}\right\rangle \cdot x=\left\langle\tau_{i}\right\rangle \cdot x$; and claim follows.
\Leftrightarrow Suppose $X=\left\langle\tau_{i}\right\rangle \cdot x$. Then $x \in \operatorname{Supp} \tau_{i j}$ again by the previous lemma $\left\langle\left.\left(\tau_{1}, \ldots \tau_{n}\right)\right|_{\text {Supp } \tau_{i}}\right\rangle=\left\langle\left.\tau_{i}\right|_{\text {Supp } \tau_{i}}\right\rangle$; and so $\left\langle\tau_{i}\right\rangle \cdot x=\left\langle\tau_{1} \cdots \tau_{n}\right\rangle \cdot x$; and claim follows. Lemma (Uniqueness) Suppose $\tau_{1}, \ldots, \tau_{m}$ are disjoint cycles and $\sigma_{1}, \ldots, \sigma_{k}$ are disjoint cycles. Suppose $\left|\operatorname{Supp} \tau_{i}\right| \geq 2$, $\left|\operatorname{supp} \sigma_{i}\right| \geq 2$. Then $\tau_{1} \ldots \tau_{m}=\sigma_{1} \ldots \sigma_{k}$ implies $m=k$ and $\tau_{1}=\sigma_{i_{1}}, \ldots, \tau_{m}=\sigma_{i_{m}}$ where i_{1}, \ldots, i_{m} is a permutation of $[1 \cdots \mathrm{~m}]$.

Lecture 08: Uniqueness of cycle decomposition
PP. We proceed by induction on m; with an understanding that $m=0$ means the LHS is trivial.

Base of induction. If $k \neq 0, \operatorname{supp}\left(\sigma_{1} \ldots \sigma_{k}\right)=\bigcup_{i=1}^{k} \operatorname{supp} \sigma_{i} \neq \varnothing$ which is a contradiction.

Induction Step. Since τ_{1} is a non-trivial cycle, $\operatorname{supp} \tau_{1}$ is an orbit of τ_{1} that has at least 2 elements.

Hence $\operatorname{supp} \tau_{1}$ is an orbit of $\left\langle\tau_{1} \ldots \tau_{m}\right\rangle=\left\langle\sigma_{1} \ldots \sigma_{k}\right\rangle$.
So by the previous corollary, $\exists!i_{1}$ sit. $\operatorname{supp} \tau_{1}$ is an orbit of $\sigma_{i_{1}}$. As σ_{j} 's are cycles, supp τ_{1} is the unique orbit of $\sigma_{i_{1}}$ that has at least two elements. And so $\operatorname{supp} \sigma_{i_{1}}=\operatorname{supp} \tau_{1}$. Therefore

$$
\begin{aligned}
\left\langle\left.\tau_{1}\right|_{\text {supp } \tau_{1}}\right\rangle & =\left\langle\left.\left(\tau_{1} \cdots \tau_{m}\right)\right|_{\text {Supp } \tau_{1}}\right\rangle \\
& =\left\langle\left.\left(\sigma_{1}-\sigma_{k}\right)\right|_{\text {Supp }} \sigma_{i_{1}}\right\rangle \\
& =\left\langle\left.\sigma_{i_{1}}\right|_{\text {Supp } \sigma_{i_{1}}}\right\rangle ; \text { which implies } \tau_{1}=\sigma_{i_{1}}
\end{aligned}
$$

Now claim follows by commutativity of σ_{j} 's and induction hypoth.

Lecture 08: Existence of cycle decomposition

Lemma (Existence) For any $\sigma \in S_{n}\left\{\{I\}, \exists\right.$ disjoint cycles τ_{i} 's st. $\quad \sigma=\tau_{1} \cdots \cdot \tau_{m}$.

Pf. Suppose $\langle\sigma\rangle\rangle^{[1-n]}=\left\{X_{1}, \ldots, X_{k}\right\}$; and after reordering assume $\left|X_{1}\right|, \ldots,\left|X_{m}\right| \geq 2$, and $\left|X_{m+1}\right|=\ldots=\left|X_{k}\right|=1$.

For $1 \leq i \leq m$, let $\tau_{i} \in S_{n},\left.\quad \tau_{i}\right|_{X_{i}}:=\left.\sigma\right|_{X_{i}}$ and $\left.\tau_{i}\right|_{X_{i}^{c}}=\left.I\right|_{X_{i}}$.
Chain $1 \tau_{i}$ is a cycle.
阵 of Claim. . $\tau_{i}\left(X_{i}\right)=\sigma\left(X_{i}\right)=X_{i} \Rightarrow \tau_{i}$ is saury $\Rightarrow \tau_{i} \in S_{n}$.
. $X_{i}=\langle\sigma\rangle \cdot x=\left\{x, \sigma(x), \ldots, \sigma^{-l-1}(x)\right\}$
and $\sigma^{l}(x)=x$

$$
=\left\{x, \tau_{i}(x), \ldots, \tau_{i}^{l-1}(x)\right\}
$$

$\Rightarrow \tau_{i}=\left(\begin{array}{llll}x & \sigma(x) & \cdots & \sigma^{f-1}(x)\end{array}\right)$.
Claim 2. $\sigma=\tau_{1} \cdots \tau_{m}$.
If of Claim $\left.\forall x \in \operatorname{Supp} \sigma, \exists!\quad i_{x} \in \Pi 1 \cdot m\right], x \in X_{i_{x}}$.

$$
\begin{aligned}
\Rightarrow \sigma(x)= & \tau_{i x}(x)=\left(\tau_{1} \cdots \tau_{m}\right)(x) \\
& \left\{\left(\left.\tau_{1} \ldots \tau_{m}\right|_{\text {Supp }} \tau_{i x}=\left.\tau_{i_{x}}\right|_{\text {Supp }} \tau_{i x}\right.\right.
\end{aligned}
$$

By Claim 1 and 2, $\tau_{1} \ldots \tau_{m}$ is a cycle decomposition of σ.

Proposition. $\left.\forall \sigma \in S_{n} \backslash \xi I\right\}$ can be written as a product of disjoint cycles; and this decomposition is unique up to reordering its factors. (This decomposition is called the cycle decomposition of σ.)

Lemma. Suppose $\tau_{1} \ldots \tau_{m}$ is a cycle decomposition of σ; and $\left|\operatorname{supp} \tau_{i}\right|=l_{i}$. Then $o(\sigma)=1 . c \cdot m \cdot\left(l_{1}, \ldots, l_{m}\right)$.
If. Recall that disjoint permutations commute; and if $g_{1} g_{2}=g_{2} g_{1}$, then $o\left(g_{1} g_{2}\right)=$ l.c.m. $\left(o\left(g_{1}\right), o\left(g_{2}\right)\right.$. Now prove the claim by induction on m.
Def The cycle type of a permutation $\sigma \in S_{n}$ is the partition of n given by the size of orbits of $\langle\sigma\rangle$.
Lemma. If $\tau_{1} \ldots \tau_{m}$ is a cycle decomposition of σ, then σ 's cycle type is given by $\left|\operatorname{supp} \tau_{i}\right|$'s and $\left(n-\sum_{i=1}^{m}\left|\operatorname{supp} \tau_{i}\right|\right)-$ many $1^{\prime} s$.
If Ever.

Lecture 08: Conjugacy classes in S_n
Tuesday, October 23, 2018 9:22 AM
Cor. Suppose $l_{1} \leq l_{2} \leq \cdots \leq l_{m}$ is the cycle type of σ. Then $o(\sigma)=$ 1.c.m. $\left(l_{1}, \ldots, l_{m}\right)$.

Pf. Suppose $\tau_{1} \cdots \tau_{k}$ is a cycle decomposition of σ. Then $\left\{\left|\operatorname{supp} \tau_{i}\right|\right\}_{i=1}^{k} \subseteq\left\{l_{1}, \ldots, l_{m}\right\} \subseteq\left\{\left|\operatorname{supp} \tau_{i}\right| \sum_{i=1}^{k} \cup\{1\} ;\right.$ and so I.c.m $\left(l_{1}, \ldots, l_{m}\right)=\underset{1 \leq i \leq k}{1 . c . m} \cdot\left(\left|\operatorname{Supp} \tau_{i}\right|\right)$; and claim follows.

Lemma $\sigma\left(i_{1} \cdots i_{m}\right) \sigma^{-1}=\left(\sigma\left(i_{1}\right) \cdots \sigma\left(i_{m}\right)\right.$; and so if τ is an m-cycle, then $\sigma \tau \sigma^{-1}$ is an m-cycle and

$$
\operatorname{supp}\left(\sigma \tau \sigma^{-1}\right)=\sigma(\operatorname{supp} \tau)
$$

Pf. $\quad j \notin\left\{\sigma\left(i_{1}\right), \ldots, \sigma\left(i_{m}\right)\right\} \Leftrightarrow \sigma^{-1}(j) \notin\left\{i_{1}, \ldots, i_{m}\right\}$

$$
\begin{aligned}
\Leftrightarrow & \sigma^{-1}(j) \notin \operatorname{supp} \tau \text { where } \\
& \tau=\left(i_{1}, \cdots, i_{m}\right) \\
\Leftrightarrow & \tau\left(\sigma^{-1}(j)\right)=\sigma^{-1}(j) \\
\Leftrightarrow & \sigma \tau \sigma^{-1}(j)=j .
\end{aligned}
$$

- $\sigma \tau \sigma^{-1}\left(\sigma\left(i_{l}\right)\right)=\sigma\left(\tau\left(i_{l}\right)\right)=\sigma\left(i_{l+1}\right)$ where $i_{m+1}=i_{1}$.

Next we show that cycle type determines the conjugacy class.

Proposition σ and σ^{\prime} in S_{n} are conjugate if and only if they have the same cycle type.

Pf. \Leftrightarrow Suppose $\tau_{1} \cdots \tau_{m}$ is a cycle decomposition of σ.
Then $\gamma \sigma \gamma^{-1}=\left(\gamma \tau_{1} \gamma^{-1}\right)\left(\gamma \tau_{2} \gamma^{-1}\right) \cdots\left(\gamma \tau_{m} \gamma^{-1}\right)$.

- Since τ_{i} is a cycle, $\gamma \tau_{i} \gamma^{-1}$ is a cycle.
- $\operatorname{Supp}\left(\gamma \tau_{i} \gamma^{-1}\right)=\gamma\left(\operatorname{Supp} \tau_{i}\right)$; in particular ** $\quad\left|\operatorname{supp}\left(\gamma \tau_{i} \gamma^{-1}\right)\right|=\left|\operatorname{supp} \tau_{i}\right|$.
$-\operatorname{Supp} \tau_{i} \cap \operatorname{Supp} \tau_{j}=\varnothing \Rightarrow \gamma\left(\operatorname{supp} \tau_{i}\right) \cap \gamma\left(\operatorname{supp} \tau_{j}\right)=\varnothing$

$$
\Rightarrow \operatorname{Supp}\left(\gamma \tau_{i} \gamma^{-1}\right) \cap \operatorname{supp}\left(\gamma \tau_{j} \gamma^{-1}\right)=\varnothing
$$

So $\left(\gamma \tau_{1} \gamma^{-1}\right) \cdots\left(\gamma \tau_{m} \gamma^{-1}\right)$ is a cycle decomposition of $\gamma \sigma \gamma^{-1}$. Hence by (x) claim follows.
\leftrightarrow Suppose $p_{1} \leq p_{2} \leq \cdots \leq p_{l}$ is the cycle type of σ and σ^{\prime}. So $\left.\sigma=()^{\prime}\right) \cdots\left(C_{R}\right.$ disjoint cycles. and $\sigma^{\prime}=(\underbrace{\downarrow P_{l}}_{P_{1}} \underbrace{\int_{P_{2}}}_{P_{2}}) \cdots \underbrace{P_{l} \downarrow}_{P_{l}})$. So the blue arrows

Lecture 08: Linking and transpositions
Tuesday, October 23, 2018 5:39 PM
give us $\gamma \in S_{n}$ (as numbers written in paranth. are distinct). And so $\gamma \sigma \gamma^{-1}=\sigma^{\prime}$.

Corollary. \# of conjugacy classes of $S_{n}=$
\# of partitions of n.
Remark. The above argument can help us enumerate $|C|(\sigma) \mid$; and so we can compute $C_{S_{n}}(\sigma)$.
Linking: $\left(a_{0} a_{1} \cdots a_{m}\right)\left(a_{m} a_{m+1} \cdots a_{l}\right)=\left(a_{0} \cdots a_{l}\right)$ if $a_{i} \neq a_{j}$.
P昂. It is enough to focus on a_{i} 's. (The rest are fixed).

$$
\begin{aligned}
& \forall 0 \leq i<m, \quad\left(a_{m} \cdots a_{l}\right) a_{i}=a_{i} \\
& \Rightarrow\left(a_{0} a_{1} \cdots a_{m}\right)\left(a_{m} \cdots a_{l}\right) a_{i}=a_{i+1} \\
& \left.\cdot m \leq i<l, \quad\left(a_{m} \cdots a_{l}\right) a_{i}=a_{i+1}\right\} \Rightarrow\left(a_{0} \cdots a_{m}\right)\left(a_{m} \cdots a_{l}\right) a_{i} \\
& =a_{i+1} \\
& \& m<i+1 \leq l, \quad\left(a_{l} \cdots a_{m}\right) a_{i+1}=a_{i+1} \\
& \left(a_{0} \cdots a_{m}\right)\left(a_{m} \cdots a_{l}\right) a_{l}=\left(a_{0} \cdots a_{m}\right) a_{m}=a_{0} .
\end{aligned}
$$

And so $\left(a_{0} \cdots a_{m}\right)=\left(a_{0} a_{1}\right)\left(a_{1} a_{2}\right) \cdots\left(a_{m-1} a_{m}\right)$ if $a_{1} \neq a_{j}$.
Def A 2 -cycle is called a transposition.

Cor. Any $\sigma \in S_{n}$ can be written as a product of transpositions.
pf. Any σ can be written as a product of cycles; and any cycle can be written as a product of transpositions.

Warning. This product is NOT unique :

$$
\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
2 & 3
\end{array}\right)
$$

(conjugating (13) by (122))
We will show the parity of the number of transpositions is independent of the choice of such a product.

Deft $\Delta\left(x_{1}, \ldots, x_{n}\right):=\prod_{i<j}\left(x_{i}-x_{j}\right)$

$$
\text { - } \Delta_{\sigma}\left(x_{1}, \ldots, x_{n}\right):=\Delta\left(x_{\sigma(1,}, \ldots, x_{\sigma(n)}\right) \text {. }
$$

Lemma. $\prod_{i \neq j}\left(x_{i}-x_{j}\right)=(-1)^{\frac{n(n-1)}{2}} \Delta^{2}$

$$
=(-1)^{\frac{n(n-1)}{2}} \Delta_{\sigma}^{2}
$$

in particular $\exists \in(\sigma) \in\{ \pm 1\}$ st. $\Delta_{\sigma}=\in(\sigma) \Delta$.
Pf. $\left(x_{i}-x_{j}\right)\left(x_{j}-x_{i}\right)=-\left(x_{i}-x_{j}\right)^{2}$
And we get $\frac{n(n-1)}{2}$-many (-1) factors.

Lecture 08: Sign function
Tuesday, October 23, 2018 5:59 PM
And so $\prod_{i \neq j}\left(x_{i}-x_{j}\right)=(-1)^{\frac{n(n-1)}{2}} \Delta^{2}$.
Hence

$$
\begin{aligned}
(-1)^{\frac{n(n-1)}{2}} \Delta_{\sigma}^{2} & =(-1)^{\frac{n(n-1)}{2}} \Delta\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)^{2} \\
& =\prod_{i \neq j}\left(x_{\sigma(i)}-x_{\sigma(j)}\right) \\
& =\prod_{i \neq j}\left(x_{i}-x_{j}\right) .
\end{aligned}
$$

Therefore $\Delta^{2}=\Delta_{\sigma}^{2}$, which implies $\Delta_{\sigma}=\epsilon(\sigma) \Delta$ for some $\epsilon(\sigma) \in\{ \pm 1\}$.

