Lecture 09: Sign function Thursday, October 25, 2018 8:38 AM Recall. $\Delta(x_1, ..., x_n) := \prod_{i < j} (x_i - x_j)$ and $\Delta_{\sigma'}(x_{1},...,x_{n}):=\Delta(x_{\sigma(1)},...,x_{\sigma(m)})=\prod_{i< j}(x_{\sigma(i)}-x_{\sigma(j)}).$ We showed $\prod_{i \neq j} (\chi_i - \chi_j) = (-1)^2 \Delta^2_j$ and so $\begin{array}{ccc} \underbrace{\operatorname{n}(n-1)}_{2} & \overbrace{\Delta}^{2} & = & \prod_{\substack{i \neq j \\ i \neq j}} (\chi_{\sigma(i)} - \chi_{\sigma(j)}) = & \prod_{\substack{i \neq j \\ i \neq j}} (\chi_{i} - \chi_{j}) \\ & = & (-1)^{2} & \bigtriangleup^{2} \end{array}$ Therefore $\exists \in S_n \rightarrow \{\pm 1\}, \quad \Delta_{\sigma} = \in (\sigma) \Delta$ Lemma. E is a group homomorphism. $\underline{\mathscr{H}} \quad \Delta_{\sigma_{\mathcal{T}}}(x_{1}, ..., x_{n}) = \Delta(x_{\sigma_{\mathcal{T}(\mathcal{T}(l))}}, ..., x_{\sigma_{\mathcal{T}(\mathcal{T}(n))}})$ $= \Delta_{\tau} (\chi_{\sigma(i)}, ..., \chi_{\sigma(n)})$ \downarrow $\exists_i = \chi_{\sigma(i)} \Rightarrow \Delta_{\tau} (\exists_i, ..., \forall_n) = (\exists_{\tau(i)}, ..., \exists_{\tau(n)})$ and $\exists_{\tau(i)} = \chi_{\sigma(\tau(i))}$ $= \in (\tau) \Delta(x_{\sigma(1)}, ..., x_{\sigma(n)})$ $= \in (\mathcal{T}) \in (\mathcal{T}) \bigtriangleup$ $\Rightarrow \in (\mathcal{O}_{\mathcal{T}}) \land = \in (\mathcal{T}) \in (\mathcal{O}) \land \Rightarrow \in (\mathcal{O}_{\mathcal{T}}) = \in (\mathcal{O}) \in (\mathcal{T}).$ Def. ∈ is called the sign function;

Lecture 09: Number of crossings
Thurdey, October 25, 2018 BSGAM
Sometimes
$$\in$$
 is denoted by Sgn.
Notice that $\Delta_{\sigma} = \prod (x_{\sigma(1)} - x_{\sigma(2)})$
 $= (-1)^{n} \Delta$ where
 $n_{\sigma} := \frac{2}{5}(i,j) | i < j$ and $O(1) > O(2j) \frac{2}{3};$ so n_{σ} is the #
of Crossings in
 $i = 2 \cdots i = \frac{1}{3} \cdots i$
In the theory of not systems it is proved that $n_{\sigma} = l(\sigma)$
where $l(\sigma)$ is the coord metric of σ w.ret. the generating
set $\frac{2}{5}(1,2), (2,3), \dots, (n-1,n)\frac{2}{5}$.
One can use box of signs to understand n_{σ} as well:
 $p_{\sigma} = \frac{1}{5}(1,2), (2,3), \dots, (n-1,n)\frac{2}{5}$.
One can use box of signs to understand n_{σ} as well:
 $p_{\sigma} = \frac{1}{5}(1,2), (2,3), \dots, (n-1,n)\frac{2}{5}$.
 $D_{recons tor} = \frac{1}{5}(1,2), (2,3), \dots, (n-1,n)\frac{2}{5}(1,2), \dots, (n-1,n)\frac{2}{$

Lecture 09: Parity Friday, October 26, 2018 1:18 AM Theorem. (a) Suppose T, ..., Tm and O, ..., On are transpositions and $\mathcal{T}_1 \cdots \mathcal{T}_m = \mathcal{O}_1 \cdots \mathcal{O}_n$; then $m \equiv n \pmod{2}$. (b) ker $\in = \{ \mathcal{O} \in S_n \mid \mathcal{O} \text{ can be written as a product of } \}$ even # of transpositions. $\underbrace{\mathbf{Pf}}_{\cdot} (\omega) \quad (\nabla_{1} \cdots \nabla_{m} = \mathcal{O}_{1} \cdots \mathcal{O}_{n} \Rightarrow \in (\nabla_{1} \cdots \nabla_{m}) = \in (\mathcal{O}_{1} \cdots \mathcal{O}_{n}) \quad \textcircled{\begin{subarray}{c} \end{subarray}}$ By the previous lemma, E(a b) = (-1) = -1. And so \oplus implies $(-1)^m = (-1)^n$; therefore $m \equiv n \pmod{2}$. (b) O'Eker E can be written as a product of transpositions $\mathcal{T}_{1}, \dots, \mathcal{T}_{m}$. So $1 = \in (\mathcal{T}_{1}, \dots, \mathcal{T}_{m}) = (-1)^{m}$; and so m is even. By a similar argumen LHS 2 RHS. A nice application of parity of permutations is on possible patterns in a 15-puzzle. In a 15-puzzle, there are 15 small squares (numbered) and an empty spot. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 around numbers. Q Can one reach to the

Lecture 09: 15-puzzle Friday, October 26, 2018 1:33 AM following pattern 1234? The answer is NOI Let's 9678 9101112 31514 number the empty spot 16; and think about any possible pattern as an element of S_{16} . Notice any move $1, 1, \leftarrow$, and -> can be viewed as a transposition that involves 16. If we reach to the new pattern, 16 is moved back to its initial position. So # \uparrow 's = # \downarrow 's and # - + 's = # - 's. Therefore it should be an even permutation of S_{16} ; so it cannot be (14 15). Det. ker E is called Alternating group; and it is denoted by An. Elements of An are called even and elements of Sn/An are called odd. <u>Observe</u>. $A_n \triangleleft S_n$ and $S_n/A_n \simeq \frac{1}{2} \pm \frac{1}{2}$ if $n \ge 2$. Next we will show that A_n is simple if $n \ge 5$. We start with a few lemmas.

Lecture 09: 3-cycles and A_n
Product October 25, 2018 132 AM
Lemma 1. An is generated by 3-cycles.
PE. Since any element of An is a product of even number of
transpositions, it is enough to write a product of two transp.
as a product of 3-cycles. Now notice:
(a b) (a b) = I; (a b) (b c) = (a b c); [linking]
(a b) (c d) = (a b) (b c) (b c) (c d) = (a b c) (b c d);
And (a b c) = (a b) (b c) (b c) (c d) = (a b c) (b c d);
And (a b c) = (a b) (b c) eAn · **B**
Lemma 2 Nd An,
$$n \ge 5$$
, and N contains a 3-cycle. Then
N=An.
PF. Suppose T_1 and T_2 are two 3-cycles. So $\exists \sigma \in S_n$ sit.
 $\sigma'T_1 \sigma' = T_2$. Since $|Supp T_1|=3$ and $n \ge 5$, $\exists a \neq b$ st.
 $a \land b \le n$, $d \land b \ge 1$, $d \land 1$, $d \land$

Lecture 09: A_5 is simple Friday, October 26, 2018 9:33 AM conjugates of T are in N; and so all 3-cycles are An. And Claim follows from Lemm 1. Lemma 3. A_5 is simple; that means there is no $[I] \neq N \downarrow A_5$. $\frac{PP}{P} \cdot \text{Suppose to the contrary that } \exists \forall I \notin N \neq A_5 \cdot$ <u>Case 1.</u> 3 | INI. In this case N has an element of order 3. The cycle type of an element of order p is $P \ge P \ge \cdots \ge P \ge 1 \ge \cdots \ge 1$. So the only possible cycle type of this element is 32121; this means N has a 3-cycle. Therefore by Lemma 2 N=A5 which is a contradiction. Case 2. 5 [INI, 37 [N]. In this case N has a subgroup of order 5. Since 57 1A51, N has a Sylow 5-subgroup of A5 as a subgroup. Therefore all the Sylow 5-subgps of A5 are subgps of N. Hence all

Lecture 09: A 5 is simple
Fiddy, October 26, 2013 9:45 MM
elements of order 5 are in N. The cycle type of an
element of order 5 in
$$S_5$$
 is 5; that means it is a
5-cycle. Number of 5-cycles is $41 = 24$; and so
INI 2 25 · As INI 60, we deduce INI= 30; this
implies 3 | INI which is a contradiction.
Case 3. 31 INI which is a contradiction.
Case 3. 31 INI othich is a contradiction.
Case 3. 31 INI othich is a contradiction.
N has an element of order 2. Possible cycle types of an
element of order 2 are $2 \ge 1 \ge 1 \ge 1$ and $2 \ge 2 \ge 1$.
Since the first type gives us an odd permutation and
N $\subseteq A_5$, \exists an element of the form (a b)(c d) in
N. After reordering we can assume (1 2)(3 4) \in N; and so
(1 2 3) 0' (1 2 3)¹ = (3 1)(2 4) \in N,
(1 5)(3 4) 0' (1 5)(3 4) = (5 2)(4 3) \in N.

Lecture 09: A_n is simple Friday, October 26, 2018 10:02 AM Theorem. An is simple if n25. <u>Pf</u>. We proceed by induction on n. We have already proved the base of induction. Next we will prove the induction step for $n \ge 6$. Let $G_i := \underbrace{20eA_n \mid 0(i) = i \underbrace{3}$. Notice that G: $A_{D:-nJ\setminus \{i\}}$ $O \mapsto \overline{O}$ where $\overline{O}(j) = O(j)$. $\Box \mapsto \overline{O}$ where O(i) = i and $O(j) = \overline{O}(j)$ if $j \neq i$ are group homomorphisms that are inverse of each other. So $G_i \simeq A_{n-1}$ for any $1 \le i \le n$. So by the induction hypothesis Gi's are simple. Suppose I = N A An. Then NaG; & G; for any i. Since G; is simple, either G; N=G; or $G_i \cap N = \{I\}$. If $G_i \cap N = G_i$, then N contains a 3-cycle. Lemma 2 implies N= An which is a contradiction. So for any i, $G_{i} \cap N = I$; that means $\forall \sigma \in N, \forall i', \sigma(i) \neq i$. Hence ∀ J≠T EN, Vi, JCi) ≠ TCi). Next we will find two elements of N that violate (*).

Lecture 09: A_n is simple
Product Decoder 26, 2018 1.16 PM
Suppose
$$\sigma \in N \setminus I$$
 and $p_1 \ge p_2 \ge ...$ is its cycle type.
Case 1. $p_1 \ge 3$.
So $\sigma = (a \ b \ c \ ...) (...) ... \in N$. Since $n \ge 6$, $\exists e_1 f$,
 p_1 p_2
 $e_1 f_3 \cap a_2 h, c_3 \equiv \emptyset$. And so
($c \in f$) σ ($c \in f$)⁻¹ = ($a \ b \in ...$)(...) ... $\in N$
 σ'
and $\sigma(a) \equiv \sigma'(a) \equiv b$, which contradicts \oplus).
 $\sigma' \neq \sigma'$ as $\sigma(b) \neq \sigma'(b)$
Case 2. $p_1 \equiv 2$
Since $\sigma \in A_n$, $p_2 = 2$; and so $\sigma \equiv (a \ b) (c \ d) (...)$...
Since $n \ge 6$, $\exists e_1 f$, $s_e, f_3 \cap s_a, b, c_1 s \equiv \emptyset$; and so
($d = f$) σ ($d = f$)^d = ($a \ b$) ($c \in$) (...) $\in N$
 σ'
and $\sigma(a) \equiv \sigma'(a) \equiv b$ and $\sigma \neq \sigma'$ as $\sigma'(c) \neq \sigma'(c)$, which
contradicts (*).