Def: A group G is called **solvable** if \(\exists k \in \mathbb{Z}^{>0}, \ G^{(k)} = 1. \)

(Name is given because of a theorem by Galois on solvability of a polynomial by radicals.)

Lemma. $\phi: G \to H$ a group homomorphism \(\Rightarrow \)

\[\forall i, \ \phi(G^{(i)}) = \phi(G)^{(i)}. \]

Prop. Exercise, prove this by induction on i.

Theorem. Suppose G is a solvable group, $H \leq G$, and $N \leq G$.

Then (1) H is solvable, (2) G/N is solvable.

Pf. (1) By induction on i, \(H^{(i)} \subseteq G^{(i)} \) \(\Rightarrow \)

\[H^{(k)} = 1 \]

\[G^{(k)} = 1 \]

(2) $\pi: G \to G/N$ \(\Rightarrow \)

\[\pi(G)^{(k)} = \pi(G^{(k)}) = 1 \Rightarrow (G/N)^{(k)} = 1. \]

Proposition. Suppose G is a finite group. Then

G is solvable \(\iff \) all the composition factors of G

are cyclic groups of prime order.

Pf. (\Rightarrow) Suppose \(1 = N_0 \triangleleft N_1 \triangleleft \cdots \triangleleft N_k = G \) is a composition series of G. Then N_i's are solvable, and so N_i/N_{i-1}'s are solvable. Therefore the following claim implies this direc.
Claim. A solvable simple group is a cyclic group of prime order.

\[\begin{align*}
\text{If of Claim. } & \quad H^{(k)} = 1 \iff H^{(d)} \neq H \iff H^{(d)} = 1 \Rightarrow H \text{ abelian} \\
& \Rightarrow \text{ any subgroup is normal } \iff H \text{ is a cyclic group of prime order. } \\
& \quad \square
\end{align*} \]

(\Leftarrow) Suppose \(1 = N_0 < \cdots < N_k = G\) is a composition series and \(N_i/N_{i+1}\) is cyclic. Then by a lemma that we proved earlier \(G^{(k)} = 1\) and so \(G\) is solvable.

Def. Let \(\gamma_1(G) := G, \gamma_{i+1}(G) := [\gamma_i(G), G] \). \(\bigcap_{i=1}^{\infty} \gamma_i(G) \) is called the lower central series of \(G\).

- Let \(Z_0(G) := \{1\}, Z(G/Z_i(G)) = Z_{i+1}(G)/Z_i(G) \). \(\bigcap_{i=0}^{\infty} Z_i(G) \) is called the upper central series of \(G\).

Basic Properties
(1) \(\gamma_i(G) \) is a char. subgroup
(2) \(\gamma_1(G) \supseteq \gamma_2(G) \supseteq \cdots \)
(3) \(Z(G/\gamma_{i+1}(G)) \supseteq \gamma_i(G)/\gamma_{i+1}(G) \).

(4) \(Z_i(C_G) \) is a char. subgp.

(5) \(Z_{i+1}(G)/Z_i(C_G) \) is abelian.

Pf. (1) We proceed by induction on \(i \); base case is clear.

\[
\forall \theta \in \text{Aut}(G), \quad \theta(\gamma_{i+1}(G)) = \theta([\gamma_i(G), G]) = [\theta(\gamma_i(G)), \theta(G)]
\]

\[= [\gamma_i(G), G] = \gamma_{i+1}(G).\]

(2) \([\gamma_i(C_G), G] \subseteq \gamma_i(C_G) \) as \(\gamma_i(C_G) \triangleleft G \).

(3) \(\forall g \in G, g' \in \gamma_i(C_G), \ [g, g'] \in \gamma_{i+1}(G) \); and so

\[
(\gamma_{i+1}(G))(g' \gamma_{i+1}(G)) = (g' \gamma_{i+1}(G))(g \gamma_{i+1}(G)), \text{ which}
\]

implies \(g' \gamma_{i+1}(G) \in Z(G/\gamma_{i+1}(G)) \).

(4) We proceed by induction on \(i \); the base case is clear.

\(\forall \theta \in \text{Aut}(G), \) since \(\Theta(Z_i(G)) = Z_i(G) \),

\[
\overline{\Theta}: G/Z_i(C_G) \to G/Z_i(C_G), \quad \overline{\Theta}(gZ_i(G)) := \Theta(g)Z_i(G) \text{ is}
\]
a well-defined automorphism; and so \(\overline{\Theta}(Z(G/Z_i(G))) = Z(G/Z_i(G)) \).

This implies \(\Theta(Z_{i+1}(G)) Z_i(C_G) = Z_{i+1}(G) \Rightarrow \Theta(Z_{i+1}(G)) = Z_{i+1}(G) \)

\(\overline{\Theta}(Z_i(C_G)) \)
(5) \(Z_{i+1}(G_i)/Z_i(G_i) = Z(G_i/Z_i(G_i)) \); and so it is abelian.

Theorem: For a non-negative integer \(c \),

\[
\gamma_{c+1}(G) = \gamma_{c+1} \iff Z_c(G) = G.
\]

Pf. \((\Rightarrow)\) We prove by induction on \(i \) that

\[
\gamma_{c+1-i}(G) \subseteq Z_i(G).
\]

Base follows from \(\gamma_{c+1}(G) = \gamma_{c+1} \).

Induction Step. To show \(\gamma_{c-i}(G) \subseteq Z_{i+1}(G) \), one has to show \(\forall g' \in \gamma_{c-i}(G), \ g' Z_i(G) \subseteq Z(G_i/Z_i(G_i)) \); that means

\[
\forall g \in G, \ [g, g'] \text{ should be in } Z_i(G).
\]

\[
[g, g'] \in [G, \gamma_{c-i}(G)] = \gamma_{c-i+1}(G) \subseteq Z_i(G), \text{ and claim follows. And so } G = \gamma_1(G) \subseteq Z_c(G).
\]

\((\Leftarrow)\) By induction on \(i \), we prove \(\gamma_i(G) \subseteq Z_{c+i-1}(G) \).

Since \(Z_c(G) = G \), the base case follows.

To prove the induction step, we have to show \(\gamma_{i+1}(G_i) \subseteq Z_{c-i}(G) \).
Lecture 11: Nilpotent groups

Thursday, November 1, 2018 1:18 AM

Notice that \(Z_{c-i+1}(G)/Z_{c-i}(G) = Z(G/Z_{c-i}(G)) \).

\[
\Rightarrow [G, Z_{c-i+1}(G)] \subseteq Z_{c-i}(G) \quad \Rightarrow [G, Z_{c-i}(G)] \subseteq Z_{c-i}(G)
\]

\[
\Rightarrow \gamma_i(G) \subseteq Z_{c-i}(G) \quad \Rightarrow \gamma_{i+1}(G) \subseteq Z_{c-i}(G);
\]

and claim follows. In particular, \(\gamma_{c+1}(G) \subseteq Z_c(G) = \mathbb{Z}_c \).

Def. A group \(G \) is called **nilpotent** if \(\exists c \in \mathbb{Z}^+ \) s.t.

\[
\gamma_{c+1}(G) = 1.
\]

(Alternatively \(Z_c(G) = G \)). In this case we say the

nilpotency class of \(G \) is \(c \).

Proposition. A finite \(p \)-group is nilpotent.

Pr. We proceed by strong induction on \(|G| \). If \(|G| = 1 \), we are done. If not, \(Z(G) \neq 1 \). And so \(|G/Z(G)| < |G| \) and \(G/Z(G) \) is a finite \(p \)-group. So \(\exists c \in \mathbb{Z}^+ \) s.t. the \(c \)-th group in the upper central series of \(G/Z(G) \) is \(G/Z(G) \).

Notice that the upper central series of \(G/Z(G) \) is \(\{Z_i(G)/Z(G)\}_{i=1}^\infty \); and so \(Z_c(G) = G \).
Proposition. Suppose G is a nilpotent group. Then

$$H \leq G \Rightarrow H \leq N_G(H).$$

Pf. Since G is nilpotent, $\exists c \in \mathbb{Z}^+, Z_c(G) = G$. Let $i_0 < c$ be s.t. $Z_{i_0}(G) \subseteq H$ and $Z_{i_0+1}(G) \not\subseteq H$.

Let $g \in Z_{i_0+1}(G) \setminus H \Rightarrow g Z_{i_0}(G) \in Z(G/Z_{i_0}(G))$

$$g \not\in H$$

$$\Rightarrow [g, H] \subseteq Z_{i_0}(G) \subseteq H \Rightarrow \forall h \in H, g^{-1} h^{-1} g h \in H$$

$$\Rightarrow g^{-1} h^{-1} g \in H \Rightarrow g^{-1} H g \subseteq H$$

Similarly $g H g^{-1} \subseteq H \Rightarrow g \in N_G(H) \setminus H$.

Corollary. Suppose G is a finite nilpotent group. Then any $Sylow$ p-subgp of G is normal.

Pf. We know $N_G(N_G(P)) = N_G(P)$ if P is a $Sylow$ p-subgp.

Hence, by the above proposition, $N_G(P) = G$; this means $P \triangleleft G$. \blacksquare
Theorem. Suppose G is a finite group. Then the following statements are equivalent:

1. G is nilpotent.
2. $\forall p \mid |G|$, G has a unique Sylow p-subgroup.
3. $G \cong \prod_{i=1}^{m} P_i$ where P_i is a finite p_i-group.

Proof. (1) \Rightarrow (2) is proved in the previous corollary.

(2) \Rightarrow (3) Suppose $|G| = \prod_{i=1}^{m} p_i^{k_i}$ where $k_i \in \mathbb{Z}^+$ and p_i's are distinct prime numbers. Let P_i be the unique Sylow p_i-subgroup of G. So $P_i \triangleleft G$; and since $\gcd(1, p_i, p_j) = 1$ for $i \neq j$, P_i and P_j commute. In particular, for any l,

\[P_1 P_2 \cdots P_l \text{ is a normal subgroup of } G. \]

Claim. $P_1 \times P_2 \times \cdots \times P_l \xrightarrow{\phi} P_1 P_2 \cdots P_l$ is an isomorphism.

Proof of Claim. We proceed by induction l. The base case is clear.
Lecture 11: Characterization of finite nilpotent groups

Thursday, November 1, 2018 8:51 AM

Induction Step: \[P_1 \times \cdots \times P_\ell \times P_{\ell+1} \cong P_1 \cdot P_2 \cdot \cdots \cdot P_\ell \times P_{\ell+1} \]

By the induction hypothesis, \((\phi_{i}, \text{id.})\) is an isomorphism (and \(P_1 \cdot \cdots \cdot P_\ell \cdot P_{\ell+1} = \prod_{i=1}^{\ell+1} P_i\)). So it is enough to show the 2nd map is a group homomorphism.

\[P_1 \cdot \cdots \cdot P_\ell \triangleleft G \]

\[P_{\ell+1} \triangleleft G \]

\[g \text{ and } \prod_{i=1}^{\ell} P_i \text{ commute.} \]

Based on these it is easy to see why \(\phi\) is an isomorphism (why?)

\((3) \Rightarrow (1)\) We have already proved that \(P_i\)’s are nilpotent. So \(\exists c \in \mathbb{Z}^+\) st. \(\gamma_c(P_i) = \mathbb{Z}^c\) for \(1 \leq i \leq m\). Then

\[\gamma_c(G) = \prod_{i=1}^{m} \gamma_c(P_i) = \mathbb{Z}^c, \]

(Justify this)

Let me finish today’s lecture by another characterization of finite nilpotent groups:

Theorem. A finite group is nilpotent if and only if all maximal
subgroups are normal.

\[
\text{Pf. } (\Rightarrow) \quad M \neq G \implies M \leq N_G(M) \neq G \implies N_G(M) = G \implies M \vartriangleleft G.
\]

\[
\text{M is maximal}
\]

\[
(\Leftarrow) \quad \text{Let } P \text{ be a Sylow } p\text{-subgp. We would like to show } P \triangleleft G. \text{ Suppose to the contrary } N_G(P) \neq G. \text{ Then there is a maximal subgroup } M \text{ of } G \text{ st. } N_G(P) \leq M \text{ (since } G \text{ is finite, there is such a subgroup.) And so } M \vartriangleleft G \text{ and } P \text{ is a Sylow } p\text{-subgroup of } M. \text{ Hence by Fratini's argument } G = N_G(P). M \leq M \text{ which is a contradiction.} \]