Lecture 12: Some properties of nilpotent groups
Tuesday, November 6, 2018 8:16 AM
Proposition. Suppose G is nilpotent. Then
C1) G is solvable, (2) If
$$1 \neq N \leq G$$
, then $Nn Z(G) \neq 1$,
C3) If $H \leq G$, $N \leq G$, then H and G_{N} are nilpotent.
PF. (1) $G = Y_1(G) \supset Y_2(G) \supset \cdots \supset Y_{G+1}(G)$ and $Y_1(G)^{T}$
abelian (in fact $Y_1(G) \supset Y_2(G) \supset \cdots \supset Y_{G+1}(G)$)
And so G is solvable.
(a) Consider $N = Nn Y_1(G) \supset Nn Y_2(G) \supset \cdots \supset Nn Y_{G+1}(G) = 1$.
Then $\exists i$ s.t. $Nn Y_1(G) \neq 1$ and $Nn Y_{1+1}(G) = 1$.
Claim. $Nn Y_1(G) \subseteq Z(G)$.
Pr. Let $h \in Nn Y_1(G)$ and $g \in G$. Then
 $[g, h] \in [G, N] \cap [G, Y_1(G)] \subseteq Nn Y_{1+1}(G) = 1$.
 $\Rightarrow \forall g \in G, [g, h] = 1 \Rightarrow h \in Z(G).$
(3) By induction on i, show $Y_1(H) \subseteq Y_1(G)$ and
 $Y_1(G'_N) = Y_1(G)N_1'N$

Lecture 12: Frattini subgroup
Tuesday, November 6, 2018 259 PM
Def. The Trattini subgroup
$$\Phi(G)$$
 of a group is the intersection
of all of its maximal subgroups.
. Let Max(G) := $\frac{2}{5}$ M < G | M is a maximal subgroup of G3.
Observe. $\forall \Theta \in Aut(G)$, $M \in Nax(G) \Rightarrow \Theta(H) \in Max(G)$
And so $\Theta: Max(C) \rightarrow Max(G)$, is a bijection.
 $M \mapsto \Theta(H)$
 $\Phi(G) = \bigcap_{M \to Aut} M = \Theta(\Phi(G)) = \Theta(\bigcap_{M \to Aut} M)$
 $\Phi \in Aut(G)$
 $\Theta = \Theta(H)$
 Θ

Lecture 12: Frattini subgroup
Treader, November 6, 2038 3.33 PM
Since MeMax Gr, either M=M (in which case
$$\overline{M} = \overline{M}$$
) or $M = \overline{G}$
(in which case $\overline{M} = G_{N}$). Hence $\overline{M} \in Max G_{N}$.
 \overline{Gor} . $\overline{\Phi}(\overline{G})N_{N} \subseteq \overline{\Phi}(\overline{G}_{N})$.
 $\underline{PP} = \overline{\Phi}(\overline{G}_{N}) = \bigcap \overline{M} = \bigcap M_{N}$
 $\overline{MeMax G}_{N}$
 $MeMax G_{N}$
 $Memax G_{N}$

Lecture 12: Abelian groups with prime exponent Tuesday, November 6, 2018 3:25 PM $v \in V$ has order p. Then we can define a \mathbb{Z}/\mathbb{PZ} -scalar multiplication on V. Let's use + for the group operation. We let $(n+p\mathbb{Z})$. $\mathcal{V} := n\mathcal{V} = \mathcal{V} + \cdots + \mathcal{V}$. Since $p\mathcal{V} = 0$, in times it is well-defined. One can check that this scalar multipli. makes V a vector space over $\mathbb{Z}/p_{\mathbb{Z}}$. In particular, if V is finite, then dim $V < \infty$; and so after choosing a $\mathbb{Z}_{h\mathbb{Z}}$ basis we see $V \simeq \mathbb{Z}_{\mathbb{Z}} \times \cdots \times \mathbb{Z}_{\mathbb{Z}}$. (By classification of finite abelian groups any abelian group is of the form $\mathbb{Z}_{n,\mathbb{Z}} \oplus \cdots \oplus \mathbb{Z}_{n_k\mathbb{Z}}$. If all non-trivial elements have order p, then n = ...= n = p. we will prove the classification theorem in 200B.) Any subgroup of V can be viewed as a subspace of V. So maximal subgroups are precisely codimension 1 subspaces. For $v \in V \setminus \{0\}$, there is a \mathbb{Z}/\mathbb{PZ} - basis $\{v_1, \dots, v_n\}$ s.t. $v_1 = v$. So the Z/PZ-span of vz,...,vn is a maximal subgroup W of V

Lecture 12: Frattini subgroup of p-groups
Wednesday, November 7, 2018 BESPAN
cohich dres not contain v. Hence
$$v \notin \Phi(V)$$
; and so $\Phi(V) = \{o\}$.
Summary. If V is an abelian group and any non-trivial element
has order p , then $\Phi(V) = o$.
Theorem · Suppose G is a finite p -group. Then
 $\Phi(G) = G^{\dagger}[G,G]$, where $G^{\dagger} = \{g\}^{\dagger}[g \in G\}$.
CNotice that G^{\dagger} is NOT necessarily a subgroup.)
R.-Suppose M is a maximal subgroup. Since G is nilpotent, $M \triangleleft G$.
Since M is maximal, G'_M has no proper non-trivial subgroup.
Hence G'_M is a cyclic group of prime order. As G is a
finite p -group, we deduce $G'_M \simeq \mathbb{Z}/p_{\mathbb{Z}}$. Therefore
G) G'_M is abelian \Rightarrow $[G_1G_1 \subseteq M] = G^{\dagger}[G,G] \subseteq M$
(2) $\forall g \in G$, $(GM)^{3} = M \Rightarrow G^{\dagger} \subseteq M$ and so
 $G^{\dagger}[G,G] \subseteq \Phi(G)$.
Since $G'_{[G,G]}$ is abelian, $(G'_{[G,G]})^{\dagger}$ is a normal subgroup.
($G'_{[G,G]})^{\dagger} = \{g^{\dagger}[G,G] \mid g \in G\} = G^{\dagger}[G,G]/[G,G]$. Therefore $G^{\dagger}[G,G]$

Lecture 12: Free monoid Tuesday, November 6, 2018 8:30 AM We include the empty word p in L(X). Conditination defines a binary operator on L(X); that is $(\chi_1\chi_2\cdots\chi_n)\cdot(y_1y_2\cdots y_n):=\chi_1\cdots\chi_ny_1\cdots y_m.$ Clearly . is an associative operator; and the empty word is the neutral element of $(L(X), \cdot)$. So $(L(X), \cdot)$ is a monorid. In fact L(X) is the free monorid generated by X; that means L(X) satisfies the following universal property: (Universal Proprety of free objects.) Any function of from X to a monoid M has a unique extension to a monoid homomorphism $\hat{f}: L(X) \rightarrow M$. The Universal Property of a free object is often described using the following diagram: Set Monoria

Lecture 12: Free monoid

Wednesday, November 7, 2018 3:13 PM

Remark. If monoid is changed to group, we get the definition of free group generated by X; if monoid is changed to k-algebra, we get the definition of free k-algebra; etc. Pf of freeness of L(X). Let $\hat{f}(x_1 \cdots x_n) := f(x_1) \cdot f(x_2) \cdot \cdots \cdot f(x_n)$ and $\hat{f}(\emptyset) = 1_M$; and check that is a monorid homomorphism. Uniquess is clear! Suppose $\{G_i\}_{i \in I}$ is a family of groups. Let X be the disjoint union of G_i 's. (Notice that coe can consider the set $G_i \times z$ is instead of Gi, and think about it as a copy of Gi. This way we can make sure that G's are disjoint.) Let L(X) be the free monoid generated by X. For example Suppose $G_1 = \mathbb{Z}/_{2\mathbb{Z}}$ and $G_2 = \mathbb{Z}/_{3\mathbb{Z}}$. First we pick isomorphic copies of G, and G2 that are disjoint, say $G_1 = \frac{3}{2}e, a_2$ and $a_2^2 = e; G_2 = \frac{3}{2}1, b, b^2 \frac{3}{2}$ and $b^3 = 1$.

Lecture 12: Free product of groups Wednesday, November 7, 2018 3:30 PM Then $eall bbb^2 e L(X)$ and this is different from the word ab. The first word has length 7 and the 2nd word has length 2. To get a group structure we have to define an equivalency relation on L(X); let ~ be the equi. relation generated by the following. • $\omega_1 e \omega_2 \sim \omega_1 \omega_2$ if e is the neutral element of G_i for some iEI. • $\omega_1 \chi_1 \chi_2 \omega_2 \sim \omega_1 \chi_3 \omega_2$ if $\chi_1, \chi_2 \in G_i$ and $\chi_3 = \chi_1 \cdot \chi_2$ Let $F(X) := L(X)/\sim$. <u>Claim.</u> $\omega_1 \sim \omega_1'$ and $\omega_2 \sim \omega_2' \rightarrow \omega_1 \omega_2 \sim \omega_1' \omega_2'$ (try to convince yourself that this is true.) Let $[\omega_1]_{N} \cdot [\omega_2]_{N} := [\omega_1 \omega_2]_{N}$. Then by the above claim This is a well-defined operator. Claim. $(F(X), \cdot)$ is a group. $\mathbb{P} \cdot \cdot (Associative) ([\omega_1] \cdot [\omega_2]) \cdot [\omega_3] = [\omega_1 \omega_2] \cdot [\omega_3]$ $= [\omega_1 \omega_2 \omega_2]$

Lecture 12: Free product of groups Wednesday, November 7, 2018 3:39 PM $[\omega_1] \cdot ([\omega_2] \cdot [\omega_3]) = [\omega_1] \cdot [\omega_2 \omega_3]$ $= [\omega_1 \omega_2 \omega_3]$ · (Neutral element) [w]. [\$] = [\$] = [\$] . [\$] . (Inverse) $[x_1 x_2 \dots x_n] [x_n^{-1} x_{n-1}^{-1} \dots x_n^{-1}]$ $= [x_1 x_2 \cdots x_n x_n^{-1} x_{n-1}^{-1} \cdots x_1^{-1}]$ $X_1 \cdots X_{n-1} \times_n X_n^{-1} \times_{n-1}^{-1} \cdots \times_1^{-1} \sim X_1 \cdots \times_{n-1}^{-1} e \times_{n-1}^{-1} \cdots \times_1^{-1}$ $\sim \times_1 \cdots \times_{n-1} \times_{n-1}^{-1} \cdots \times_1^{-1}$ So by induction on n, we have $\chi_1 \dots \chi_n \chi_n^{-1} \dots \chi_n^{-1} \sim \emptyset$. Similarly $[x_n^{-1} \cdots x_l^{-1}] \cdot [x_1 \cdots x_n] = [\emptyset]$. F(X) is called the free product of Gi's; and it is denoted by $* G_{1} \cdot$ $i \in T$