Lecture 17: Prime and maximal ideals Wednesday, December 5, 2018 6:01 PM In the previous lecture we defined prime and maximal ideals. The following lemma gives us the connection between these proper. of an ideal and the corresponding factor ring. Lemma. Suppose A is a unital commutative ring and IJA. (1) I is prime $\iff A/_{I}$ is an integral domain. (2) I is maximal $\Leftrightarrow A_{T}$ is a field. Pf. (1) (=>) Since I is prime, it is proper. And so A/I is not the trivial ring. $(a+I)(b+I)=o+I \Rightarrow ab+I=o+I \Rightarrow ab\in I$ =) a e I or b e I $\Rightarrow \alpha + I = 0 \quad \text{or } b + I = 0$ So Al has no zero-divisor. (<). Ay is an integral domain => A/I is not the trivial ring $\Rightarrow I \neq A$ $\cdot ab \in I \Rightarrow (a+I)(b+I) = 0 \Rightarrow a+I = 0$ or b+I = 0a a e I or be I. (2) (=>) Since I is maximal, it is a proper ideal; and so A/I is

Lecture 17: Prime and maximal ideals
Thursday, December 6, 2018 8:54 AM
not the trivial ring. Suppose
$$a+I \neq o$$
. Then $a \notin I$. So
 $I \subseteq \langle a \rangle + I \triangleleft A$. By maximality of I, we deduce that
 $\langle a \rangle + I = A$; and so $\exists b \in A$ and $c \in I$ s.t. $ab + c = 1$.
This implies $(a+I)(b+I)=1+I$; and that means $a+I$ is
a unit; and so A'_{I} is a field.
 $\langle \pm \rangle$ Since A'_{I} is a field, it is a non-trivial ring. And so I is
a proper ideal. Suppose $I \subseteq J \triangleleft A$. Let $a \in J \backslash I$. Then
 $a+I$ is a unit in A'_{I} . So $\exists b \in A$ set. $(a+I)(b+I)=1+I$.
Therefore $\exists c \in I$ s.t. $ab+c=1$, which implies
 $1=ab+c \in \langle a \rangle + I \subseteq J$; and so $J=A$. Thus I is
a maximal ideal. **B**
Corollary. Max (A) \subseteq Spec (A).
PE. the Max (A) $\Rightarrow A'_{HF}$ is a field $\Rightarrow A'_{HF}$ is an integral domain
 \Rightarrow the Spec(A) and $|A'_{HF}|_{\langle \infty} \Rightarrow HF \in Max(A)$.

Lecture 17: Zorn's lemma Thursday, December 6, 2018 11:09 PM <u>Pf</u>: spe Spec (A) \Rightarrow A/p is an integral domain? |A/p| < 00 A/12 is a field => rp e Max (A). Next we will find lots of prime and maximal ideals. To show this we use Zorn's lemma. This result is equivalent to axiom of choice . \underline{Def} . A non-empty set Σ with a relation \preccurlyeq is called a Partially Ordered Set (POSet) if ·axa ·axb} ⇒ a=b · axb} ⇒ axc. bxaJ bxcJ Def. Suppose (Σ, \preccurlyeq) is a poset. A non-empty subset C of I is called a chain if Va, be C, either and b or bya. (It is also called a totally ordered set.) Def. Suppose (Σ, χ) is a poset, and Δ is a non-empty subset of Σ . We say as Σ is an upper bound of Δ if YbeA, b Ka.

Lecture 17: Zorn's lemma Thursday, December 6, 2018 11:28 PM Def. Suppose (Σ, \preccurlyeq) is a poset, $a \in \Sigma$ is called a maximal element of $\sum i f a \ll b$ implies a = b. Zom's lemma. Suppose (Σ, \prec) is a poset. If any chain $C \subseteq \Sigma$ has an upper bound, then Σ has a maximal element. . Proof of the next theorem is a good example of how Zorn's lemma can be used in algebra. <u>Def.</u> Suppose A is a unital commutative ring. A subset SCA is called multiplicatively closed if IeS and $s_1, s_2 \in S \implies s_1 s_2 \in S$. Theorem. Suppose A is a unital commutative ring, SCA is multiplicatively closed, $M \triangleleft A$, and $M \cap S = \emptyset$. Let $\sum_{\sigma,S} := \{ b \triangleleft A \mid \sigma \subseteq b \cdot b \cap S = \emptyset \}.$ (1) $\sum_{\alpha,s}$ has a maximal element w.r.t. \subseteq . (2) If $x p \in \sum_{R,S} is a maximal element of <math>\sum_{U,S}$, then sp is prime. In particular Spec(A) $\cap \Sigma_{U,S} \neq \emptyset$.

Lecture 17: Existence of maximal and prime ideals Thursday, December 6, 2018 11:59 PM Cor. Suppose DZJA. Then I the Max A st. DC 111. Pf. of Cor. Since $DL \neq A$, $L \leq \cap DL = \emptyset$. By part (1) of the previous theorem, $\sum_{DC, \xi=13}^{\prime}$ has a maximal element HL. <u>Claim</u>. THE Max(A). <u>Pf of Claim</u>. Suppose $HIG HI \neq A$. Then $DL \subseteq HI \subseteq HI'$ and $ttr' \cap \xi_{1}\xi = \varphi$. Hence $ttr' \in \Sigma_{1}$. Since ttr is a maximal $U_{1,\xi_{1}\xi_{2}}$ element of $\Sigma'_{0,\xi_{1}\xi_{2}}$, we deduce that ttr = ttr'. Pf of Theorem . (1) By Zorn's lemma it is enough to show any chain $C \subseteq \sum_{n,s}$ has an upper bound. Claim 1. U to is an ideal of A. (This is true for any chain loce of ideals; and usually this is how Zorn's lemma is used in ring theory.) $\begin{array}{cccc} \underbrace{{Printle}_{1} & a_{1}, a_{2} \in U & b_{1} \Rightarrow \exists b_{1}, b_{2} \in C & \text{s.t.} & a_{1} \in b_{1}, \\ & b \in C & a_{2} \in b_{2} \\ & & a_{2} \in b_{2} \\ & & a_{2} \in b_{2} \\ & & & a_{2} \in b_{2} \\ \end{array}$ either $a_1, a_2 \in b_1$ or $a_1, a_2 \in b_2 \implies a_1 + a_2 \in b_1 \cup b_2$ $\Rightarrow a_1 + a_2 \in \bigcup b \cdot b \cdot b \in C$

Lecture 17: Existence of prime ideals Friday, December 7, 2018 8:14 AM •reA, aeUb=>g=bee, aebj=>raeb beelter => rae U to. tel III (Claim 1) $\frac{Claim 2}{DL,S}$ is a chain, then U b $\in \mathbb{Z}$. $\frac{DL,S}{DL,S}$ bee DL,S <u>Pf of Claim 2.</u> By Claim 1, U to a A. bee $\cup b \supseteq b \supseteq t$, $\supseteq t$ for any $b \in C$. $b \in C$ $(\bigcup_{b \in \mathcal{C}} f_b) \cap S = \bigcup_{b \in \mathcal{C}} (f_b \cap S) = \emptyset$; and claim follows. bee f_{\emptyset} (Claim 2) . By Claim 2, for any chain $C \subseteq \Sigma_{T,S}$, U to is an $D_{T,S}$, the Cupper bound of C. And so by Zorn's lemma $\sum_{U,S}$ has a maximal element. 🛾 (part (1)) (2) Suppose $xp \in \overline{\Sigma}$ is maximal in $\overline{\Sigma}$. And suppose $\alpha_{r,S}$. to the contrary up is not prime. So Ia, be A s.t. a, b& sp and abesp. Hence sp = sp+<a> and sp=sp+. By maximality of sp, we deduce that sp+sa, sp+sb, $\notin \Sigma$. Since $p+\langle a \rangle$, $p+\langle b \rangle$ are ideals of A that contain $p \ge 0$ as

Lecture 17: Existence of prime ideals
Friday, December 7, 2018 826 AM
a subset, we deduce that
$$p + \langle a \rangle \cap S \neq \emptyset$$
 and $p + \langle b \rangle \cap S \neq \emptyset$.
Say $s_1 \in ip + \langle a \rangle$ and $s_2 \in p + \langle b \rangle$. Then
 $\exists p_1 \in ip, r_1 \in A$, $s_1 = p_1 + ar_1^n \Rightarrow S \ni s_1 s_2 = p_1^n (p_2 + br_2) +$
 $\exists p_2 \in ip, r_2 \in A$, $s_2 = p_2 + br_2^n$ (ar_1) $p_2^n + (ar_1)(br_2)$
 $\Rightarrow s_1 s_2 \in ip \cap S$ which contradicts $p \in \sum_{i=1}^{n} \frac{p_1 \cdots p_i}{r_i \cdot s_i}$ as obeing
 \underline{Det} . Nil (A) := $\frac{1}{2} a \in A \mid a^n = 0$ for some $n \in \mathbb{Z}^+ 3$
is called the nilradical of A; and $a \in A$ is called
nilpotent if $a^n = 0$ for some $n \in \mathbb{Z}^+$. (So Nil(A) consists of
nilpotent elements of A.)
Theorem. (1) Nil(A) $\triangleleft A$
(2) Nil(A) $= \bigcap_{i=0}^{n+m} p_i \cdots p_i$
 $\Rightarrow (a + b)^m = \sum_{i=0}^{n+m} (n+m) a^i b^{n+m-i} = 0$
 $\Rightarrow (a + b)^m = \sum_{i=0}^{n+m} (n+m) a^i b^{n+m-i} = 0$
 $\Rightarrow a + b \in Nil(A)$

Lecture 17: Nilradical
Pride, December 7,2018 849 AM
•
$$a \in Nil(A), reA \Rightarrow \begin{cases} a^n = 0 & \text{for some } ne\mathbb{Z}^+ \end{cases} \Rightarrow (a)^n = 0$$

 $\Rightarrow racNil(A) \cdot$
(2) • $a \in Nil(A) \Rightarrow \exists ne\mathbb{Z}^+, a^n = 0$
 $\Rightarrow \forall npe Spec A, a^n exp$
 $a^n = a \cdot a^{n-1} exp \Rightarrow either a exp or a^{n-1} exp$
 $a \in \bigcap ep$
 $p \cdot npe Spec A$
• Suppose to the contrary that $\exists a \in \bigcap p \cdot Nil(A)$.
 $p \in Spec A$
Then $S_a := g \pm 1, a, a^2, \dots g$ is a multiplicatively closed set that does
not contain 0. So by the previous theorem $\exists xp \in Spec A \cap \sum_{i,j=1}^{n} a_i = a_i = a^n - a_i = a^n - a_i = a^n - a^n -$