1 Homework 2.

1. Suppose G is a simple group and it has a subgroup H of index n where n is an integer more than 1. Prove that G can be embedded into the symmetric group S_{n}.
2. For a group G, let $\operatorname{Aut}(G)$ be the group of automorphisms of G. Let $c: G \rightarrow \operatorname{Aut}(G), c(g):=c_{g}$, where $c_{g}(x):=g x g^{-1}$ for every $x \in G$.
(a) Prove that c_{g} is an automorphism of G and c is a group homomorphism.
(b) Prove that ker c is the center $Z(G)$ of G; recall that

$$
Z(G):=\{g \in G \mid \forall x \in G, g x=x g\} .
$$

(c) The image of c is called the group of inner automorphisms of G, and it is denoted by $\operatorname{Inn}(G)$. Prove that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.
(d) Prove that $|Z(\operatorname{Aut}(G))| \leq|\operatorname{Hom}(G, Z(G))|$; in particular, if either $Z(G)=1$ or G is perfect (that means G is equal to its derived subgroup $[G, G])$, then $Z(\operatorname{Aut}(G))=\{1\}$.
(Hint. The following statements can be useful.
(a) For all $g \in G$ and $\phi \in \operatorname{Aut}(G), \phi \circ c_{g} \circ \phi^{-1}=c_{\phi(g)}$.
(b) For $\phi \in Z(\operatorname{Aut}(G)), c_{g}=c_{\phi(g)}$; and so $\phi(g)=g \eta(g)$ for some $\eta(g)$ in $Z(G)$.
(c) If $\eta: G \rightarrow Z(G)$ is the function given in the previous statement, then η is a group homomorphism.)
3. Let $\mathrm{SL}_{2}(\mathbb{R})$ be the set of real 2 -by- 2 matrices with determinant 1 . For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$ and $z \in \mathscr{H}:=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$, let

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z:=\frac{a z+b}{c z+d} .
$$

(a) Prove that $\operatorname{Im}\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \cdot z\right)=\frac{\operatorname{Im}(z)}{|c z+d|^{2}}$.
(b) Prove that \cdot is an action of $\mathrm{SL}_{2}(\mathbb{R})$ on \mathscr{H}.
4. Suppose G is a finite group, $C \subseteq \mathbb{R}^{n}$ is a convex subset; that means, for all two points P, Q in C, the segment $P Q$ is a subset of C. Suppose G acts on C by affine transformations; that means
$\forall P, Q \in C, \forall t \in[0,1], \forall g \in G, \quad g \cdot(t P+(1-t) Q)=t g \cdot P+(1-t) g \cdot Q$.
Prove that G has a fixed point; that means there exists $x \in C$ such that, for all $g \in G, g \cdot x=x$.
(Hint. 1. Using induction and convexity of C, prove that for every $c_{1}, \ldots, c_{n} \in C$, their average is in C :

$$
\frac{c_{1}+\ldots+c_{n}}{n} \in C
$$

2. For $y \in C$, consider the average $A_{G}(y)$ of the points in $\{g \cdot y \mid g \in G\}$. Prove that $A_{G}(y)$ is a fixed point of G.)
3. Suppose G is a finite subgroup of the group $\mathrm{GL}_{n}(\mathbb{R})$ of n-by- n invertible real matrices. Prove that there is a G-invariant inner product on \mathbb{R}^{n}.
(Hint. An inner product is a function $\langle\rangle:, \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ with the following properties:
(a) (Bilinear) For all $c_{1}, c_{2} \in \mathbb{R}$ and $v, v_{1}, v_{2}, w, w_{1}, w_{2} \in \mathbb{R}^{n}$,

$$
\left\langle c_{1} v_{1}+c_{2} v_{2}, w\right\rangle=c_{1}\left\langle v_{1}, w\right\rangle+c_{2}\left\langle v_{2}, w\right\rangle,\left\langle v, c_{1} w_{1}+c_{2} w_{2}\right\rangle=c_{1}\left\langle v, w_{1}\right\rangle+c_{2}\left\langle v, w_{2}\right\rangle .
$$

(b) (Symmetric) For all $v, w \in \mathbb{R}^{n},\langle v, w\rangle=\langle w, v\rangle$.
(c) (Positive definite) For all $v \in \mathbb{R}^{n},\langle v, v\rangle>0$.

For instance,

$$
\left(a_{1}, \ldots, a_{n}\right) \cdot\left(b_{1}, \ldots, b_{n}\right):=\sum_{i=1}^{n} a_{i} b_{i}
$$

is an inner product on \mathbb{R}^{n}.

Use taking the average technique: for $v, w \in \mathbb{R}^{n}$, let

$$
\langle v, w\rangle:=\frac{1}{|G|} \sum_{g \in G}(g v) \cdot(g w) .
$$

Prove that \langle,$\rangle is a G$-invariant inner product.)
(Remark. This problem plays an important role in representation theory of finite groups. Here is an application of this exercise. Suppose $V \subseteq \mathbb{R}^{n}$ is a subspace which is invariant under G; that means for all $v \in V$ and $g \in G$, $g v \in V$. Suppose \langle,$\rangle is a G$-invariant inner product. Then

$$
V^{\perp}:=\left\{w \in \mathbb{R}^{n} \mid \forall v \in V,\langle w, v\rangle=0\right\}
$$

is also a G-invariant subspace and $\mathbb{R}^{n}=V \oplus V^{\perp}$.)
6. Suppose H is a subgroup of G. Let

$$
C_{G}(H):=\{x \in G \mid \forall h \in H\}
$$

be the centralizer of H in G, and

$$
N_{G}(H):=\left\{x \in G \mid x H x^{-1}=H\right\}
$$

be the normalizer of H in G. Both of these are known to be subgroups of G and clearly $C_{G}(H) \subseteq N_{G}(H)$. Prove that $N_{G}(H) / C_{G}(H)$ can be embedded into $\operatorname{Aut}(H)$.
(Hint. Notice that $N_{G}(H)$ acts on H by conjugation, which gives us a group homomorphism from $N_{G}(H)$ to $\operatorname{Aut}(H)$.)
7. Suppose N is a finite cyclic normal subgroup of G. Prove that every subgroup of N is normal in G.

