1 Homework 3.

1. Suppose a finite group G acts on a finite set X.

- (a) Prove that $|_G \setminus^X | = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|.$
- (b) Suppose |X| > 1 and the action $G \curvearrowright X$ is transitive; that means there is only one orbit. Prove that there exists an element $g \in G$ with no fixed points.
- (c) Suppose *H* is a proper subgroup of *G*. Prove that *G* is not $\bigcup_{x \in G} x H x^{-1}$.
- (d) Are there an infinite group G and a proper subgroup H of G such that $G = \bigcup_{x \in G} x H x^{-1}$?

Hint. (a) Consider the set

$$A := \{ (g, x) \in G \times X \mid g \cdot x = x \},\$$

and count the number of elements of this set in two ways. First fix x and count over g, and deduce that

$$|A| = \sum_{x \in X} |G_x|.$$

Next, fix g and count over x, and obtain that

$$|A| = \sum_{g \in G} |\operatorname{Fix}(g)|.$$

Now, notice that $|G_x| = |G'_x|$ if x and x' are in the same orbit \mathscr{O} . Hence $|G_x| = n(\mathscr{O}_x)$ only depends on the G-orbit of x. Therefore,

$$\sum_{x \in X} |G_x| = \sum_{\mathscr{O} \in G \setminus X} \sum_{x \in \mathscr{O}} n(\mathscr{O}) = \sum_{\mathscr{O} \in G \setminus X} |\mathscr{O}| n(\mathscr{O}).$$

(b) Use part (a). (c) Consider the transitive action $G \curvearrowright G/H$ by left-translations. (d) Use linear algebra to show that every element of $\operatorname{GL}_2(\mathbb{C})$ has a conjugate that is an upper triangular matrix.

2. Suppose $p < q < \ell$ are three primes, G is a group, and $|G| = pq\ell$. Then G has a normal Sylow ℓ -subgroup.

(**Hint.** First prove that G has a normal subgroup of order either $p, q, \text{ or } \ell$ elements.)

3. Suppose G is a finite group, N is a normal subgroup of G, and $P \in \text{Syl}_p(N)$. Then $G = N_G(P)N$.

(**Hint**. For every $g \in G$, argue that gPg^{-1} is a Sylow *p*-subgroup of *N*. Use the fact that every two Sylow *p*-subgroups of *N* are conjugate in *N*.)

4. Suppose G is a finite group and H is a subgroup. Suppose for all $x \in H \setminus \{1\}$, $C_G(x) \subseteq H$. Prove that gcd(|H|, [G : H]) = 1.

(**Hint.** Suppose p is a prime which divides gcd(|H|, [G : H]). Suppose $Q \in Syl_p(H)$. Argue that there exists $P \in Syl_p(G)$ such that $Q \subseteq P$. Argue that there exists $y \in Z(Q) \setminus \{1\}$. Considering $C_G(y)$, show that $Z(P) \subseteq Q$. Suppose $x \in Z(P) \setminus \{1\}$, consider $C_G(x)$ to obtain that $P \subseteq H$. Argue why this is a contradiction.)

- 5. Suppose G is a finite group, N is a normal subgroup, and p is a prime factor of |N|.
 - (a) Suppose $P \in \text{Syl}_p(G)$ and $Q \in \text{Syl}_p(N)$. Prove that there exists $g \in G$ such that $Q = gPg^{-1} \cap N$.
 - (b) Prove that the following is a well-defined surjective function

 $\Phi : \operatorname{Syl}_n(G) \to \operatorname{Syl}_n(N), \quad \Phi(P) := P \cap N.$

(c) For $P \in \text{Syl}_p(G)$, prove that $N_G(P) \subseteq N_G(\Phi(P))$ and

$$|\Phi^{-1}(\Phi(P))| = [N_G(\Phi(P)) : N_G(P)].$$

(d) Prove that $|Syl_p(N)|$ divides $|Syl_p(G)|$.

(**Hint**. Notice that we have $\Phi(gPg^{-1}) = g\Phi(P)g^{-1}$ for every $g \in G$ and $P \in \text{Syl}_p(G)$. Use this to obtain that $[N_G(\Phi(P)) : N_G(P)]$ does not depend on the choice of P.)

6. Suppose p is an odd prime and G is a group of order p(p+1) which does not have a normal subgroup of order p. Prove that p is a Mersenne prime; that means $p = 2^n - 1$ for some positive integer n.

(Hint. Go through the proof in the lecture note.)

7. Suppose p and q are prime numbers and G is a group of order p^2q . Prove that G is not simple.