1 Homework 5.

1. Suppose N and H are two groups and $f_{1}, f_{2}: H \rightarrow \operatorname{Aut}(N)$ are two group homomorphisms. Suppose $\theta: N \rtimes_{f_{1}} H \rightarrow N \rtimes_{f_{2}} H$ is an isomorphism such that the following is a commutative diagram.

Let $\sigma: H \rightarrow \operatorname{Aut}(N), \quad \sigma(h):=f_{2}(h) \circ f_{1}(h)^{-1}$.
(a) Prove that $\sigma(h)$ is an inner automorphism of N for all $h \in H$.
(b) Prove that $\sigma\left(h_{1} h_{2}\right)=\sigma\left(h_{1}\right) \circ f_{1}\left(h_{1}\right) \circ \sigma\left(h_{2}\right) \circ f_{1}\left(h_{1}\right)^{-1}$.
(Hint. Argue that there exists a function $n: H \rightarrow N$ such that $\phi(h, 1)=$ $(h, n(h))$. Consider $\left.\phi\left((h, 1)(1, n)(h, 1)^{-1}\right).\right)$
2. Suppose n is a positive integer. Prove that every group of order n is cyclic if and only if $\operatorname{gcd}(n, \phi(n))=1$.
(Hint. One of the fundamental results in finite group theory is the following result of Burnside.

Theorem 1 (Burnside's normal p-complement). Suppose G is a finite group, P is a Sylow p-subgroup, and $P \subseteq Z\left(N_{G}(P)\right)$. Then there exists a normal subgroup N of G such that $|N|=|G / P|$.

In this problem, you are allowed to use this theorem without proof. Use strong induction on n to show that every group of order n is cyclic if $\operatorname{gcd}(n, \phi(n))=1$. Observe that $\operatorname{gcd}(n, \phi(n))=1$ implies that n is squarefree. Notice that if $m \mid n$, then $\operatorname{gcd}(m, \phi(m))=1$. By the strong induction hypothesis, deduce that every proper subgroup of G is cyclic. Deduce that if a Sylow p-subgroup is not normal, then $N_{G}(P)$ is cyclic. Use Burnside's normal complement.)
3. In this problem, you prove that $\operatorname{Aut}\left(S_{n}\right)=\operatorname{Inn}\left(S_{n}\right)$ if $n \geq 7$.
(a) Suppose ϕ is an automorphism of S_{n} which sends transpositions to transpositions; that means $\phi(a b)$ is a 2 -cycle for every $1 \leq 1<b \leq n$. Prove that ϕ is an inner automorphism. (For this part it is enough to assume that $n \geq 5$.)
(b) Suppose ϕ is an automorphism. Prove that for all $\sigma_{1}, \sigma_{2} \in S_{n}, \phi\left(\sigma_{1}\right)$ and $\phi\left(\sigma_{2}\right)$ are conjugate if and only if σ_{1} and σ_{2} are conjugate. (This is true for an automorphism of an arbitrary group.)
(c) Let T_{k} be the set of permutations with cycle type

$$
(\underbrace{2, \ldots, 2}_{k}, \underbrace{1, \ldots, 1}_{n-2 k}) .
$$

For instance T_{1} is the set of 2-cycles. Prove that

$$
\left|T_{k}\right|=\frac{n(n-1) \cdots(n-2 k+1)}{k!2^{k}} \geq \frac{n(n-1)}{2} \cdot \frac{(2 k-2)!}{k!2^{k-1}},
$$

for a positive integer $k \leq n / 2$.
(d) Prove that for every $\phi \in \operatorname{Aut}\left(S_{n}\right)$, there exists an integer k such that $\phi\left(T_{1}\right)=T_{k}$.
(e) Prove that for every $\phi \in \operatorname{Aut}\left(S_{n}\right), \phi\left(T_{1}\right)=T_{1}$. Deduce that

$$
\operatorname{Aut}\left(S_{n}\right)=\operatorname{Inn}\left(S_{n}\right) .
$$

(Hint. Consider the complete graph with n vertices. Notice that there exists a bijection between 2-cycles and edges of this graph. If an automorphism ϕ sends 2-cycles to 2-cycles, then it induces a bijection on the edges of this graph. Observe that two 2-cycles τ_{1} and τ_{2} do not commute if and only if the corresponding edges of τ_{1} and τ_{2} have a vertex in common. Use this property to show the induced map on the edges gives us an automorphism of the graph and so a permutation σ on the set of vertices. Prove that ϕ is conjugation by σ.)
4. Suppose n is an integer at least 2 .
(a) Prove that $S_{n}=\langle(12),(12 \cdots n)\rangle$ (this means the smallest subgroup of S_{n} which contains (12) and (1 $\cdots n$) is S_{n}).
(b) Suppose p is prime, $\tau \in S_{p}$ is a 2-cycle and $\sigma \in S_{p}$ is an element of order p. Prove that $S_{p}=\langle\tau, \sigma\rangle$.
(Hint. Let $\gamma:=(12)(1 \cdots n)=(2 \cdots n)$. Consider $\gamma^{i}(12) \gamma^{-i}$, and use this to show all 2 -cycles are in the group generated by these elements.

For the second part, it is better to use think about permutations of

$$
\mathbb{Z} / p \mathbb{Z}=\{0, \ldots, p-1\}
$$

Notice that an element of order p is a p-cycle. After relabelling we can and will assume that

$$
\sigma: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}, \quad \sigma(x):=x+1
$$

Argue why after another relabelling we can and will assume that $\tau=(0 a)$ for some $a \neq 0$. Consider $\sigma^{i} \tau \sigma^{-i}=(i a+i)$. Use this to obtain that $(k a(k+1) a)$ is in this group for every $k \in(\mathbb{Z} / p \mathbb{Z})^{\times}$. Inductively, show that $(0 k a)$ is in this group for every $k \in(\mathbb{Z} / p \mathbb{Z})^{\times}$. Deduce that (01) is in this group. Use the first part.)
5. (15-puzzle) In a 15 -puzzle, a player can rearrange the numbers 1 to 15 by sliding the numbers to the empty spot. Starting with the position

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

can we get to the following position?

2	1	3	4
5	6	7	8
9	10	11	12
13	14	15	

(Hint. Think about every position in the 15 -puzzle as a permutation in S_{16}. Every sliding is a 2-cycle. Argue why we need even number of sliding moves to go from the initial position to the second given position.)
6. Suppose G is a finite group of order $2^{k} m$ where k is a positive integer and m is an odd number. Suppose G has a cyclic Sylow 2-subgroup. Prove that G has a characteristic subgroup of order m.
(You are not allowed to use Burnside's p-complement theorem for this problem.)
(Hint. Suppose $\phi: G \rightarrow S_{G}$ is the embedding given by the action of G on itself by left-translations. Prove that $\epsilon \circ \phi: G \rightarrow\{ \pm 1\}$ is not trivial. Show that $\operatorname{ker} \epsilon \circ \phi$ is a characteristic subgroup of index 2. By induction prove that for every integer $1 \leq i \leq k, G$ has a characteristic subgroup of index 2^{i}.)

