
1 Homework 8.

1. Suppose G is a finite group and H is a non-trivial subgroup of G.

(a) Show that there exists a function f : Sylp(H) → Sylp(G) such that for

all P ∈ Sylp(H), P = f(P ) ∩H. Deduce that

|Sylp(H)| ≤ |Sylp(G)|.

(b) Suppose G does not have a non-trivial normal p-subgroup. Suppose

P is a non-trivial p-subgroup of G. Prove that

|Sylp(NG(P ))| < |Sylp(G)|.

(Hint. To prove the second part, use the contrary assumption and deduce

that f is surjective. Use the surjectivity of f and show that the intersection

of all Sylow p-subgroups of G is a non-trivial subgroup.)

(Remark. The intersection of all the Sylow p-subgroups of G is denoted by

Op(G). This is the largest normal p-subgroup of G; this means Op(G)⊴G

and if P is a normal p-subgroup of G, then P ⊆ Op(G). In the above

argument, you are showing that if |Sylp(H)| = |Sylp(G)|, then

Op(H) = Op(G) ∩H.)

2. Suppose G is a group of order pnq where p and q are primes. Prove that G

is solvable.

(Hint. Use the following steps.

(a) First show that it is enough to argue why a group of order pnq is not

a non-abelian simple group.

(b) Suppose to the contrary that there exists a non-abelian simple group

G of order pnq.

(c) Prove that G has exactly q Sylow p-subgroups.

(d) Let P be maximal among the intersections of pairs of Sylow p-subgroups.

Suppose P ̸= {1}, and let H := NG(P ). Prove that H has at least 2

Sylow p-subgroups.
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(e) Prove that |Sylp(H)| = q. Get a contradiction using Problem 1.

(f) Let Q := G \ (
⋃

P∈Sylp(G)(P \ {1}). Prove that |Q| = q, and deduce

that G has a unique Sylow q-subgroup. Get a contradiction.)

(Remark. Burnside used character theory of finite groups to prove that a

group of order pnqm is solvable.)

3. Suppose G = ⟨g1, . . . , gn⟩ and H is a subgroup of index at most k.

(a) Prove that H has a subgroup N such that [G : N ] ≤ k! and N ⊴G.

(b) Suppose S is a finite subset of G such that

{g1, . . . , gn} ⊆ S

and for all g ∈ G there exists s ∈ S such that

gN = sN,

and for all s ∈ S

s−1 ∈ S.

For all s, s′ ∈ S, choose c(s, s′) ∈ S such that c(s, s′)N = ss′N , and

let f(s, s′) := c(s, s′)−1ss′. Notice that the image of f is a finite subset

SN of N . Prove that N = ⟨SN ∪ (S ∩N)⟩.

(c) Prove that a finite index subgroup of a finitely generated group is

finitely generated.

(Hint. Let N be the group generated by the image of f . Prove that for all

s1, . . . , sr ∈ S,

si1 · · · sikN = si1 · · · sik−2
s′N

for some s′ ∈ S. Take n ∈ N , use the previous argument to deduce that

nN = sN for some s ∈ S. )

4. Suppose G is a group. Let tn(G) be the number of transitive actions of G

on [1..n] and

an(G) := {H ≤ G | [G : H] = n}.

(a) Prove that tn(G) = an(G)(n− 1)!.
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(b) Suppose G is a finitely generated subgroup. Prove that for all positive

integers n, G has only finitely many subgroups of index at most n.

(Hint. For the second part, think about Hom(G,Sn).)

(Remark. Lubotzky initiated the study of subgroup growth of a finitely

generated group.)

5. Suppose G = ⟨a, b⟩ and a2 = b2 = 1.

(a) Prove that G is solvable.

(b) Show that G is not necessarily finite.

(Hint. Let N = ⟨ab⟩. Prove that a, b ∈ NG(N) and deduce that N ⊴G.)

6. Suppose G is a group and a, b ∈ G. Suppose

ab2a−1 = b3 and ba2b−1 = a3.

Prove that a = b = 1.

(Hint. Consider a2b4a−2 and prove that a ∈ CG(b
4).)

(Remark. Given a set of relations R and two words w1 and w2, we can ask

whether there exists an algorithm to decide if w1 = w2. This is called the

word problem. Novikov proved that in general the answer to this question is

negative. This is in contrast to vector spaces, where we can use the reduced

row process and find out if a vector is 0. The concept of Gröbner basis gives

us an affirmative answer to the commutative ring theoretic analogue of this

question.)

7. Suppose A is a unital ring (not necessarily commutative). Suppose a is an

ideal of A and an = 0 for some positive integer n; that means

x1 · · ·xn = 0

for all x1, . . . , xn ∈ a.

(a) LetN := 1+a. Prove thatN is a nilpotent group under multiplication.

(b) Suppose R is a unital commutative ring, and Un(R) is the set of all n-

by-n upper-triangular matrices with entries in R and diagonal entries

equal to 1. Prove that Un(R) is a nilpotent group.
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(c) Prove that the set Bn(R) of all n-by-n upper-triangular matrices with

entries in R and diagonal entries in the group of units R× of R is a

solvable group.

(Hint. For the first part, notice that for all a ∈ a,

(1− a)(1 + a+ · · ·+ an−1) = 1,

and so every element of 1 + a is invertible. Inductively argue why

γi(N) ⊆ 1 + ai,

where

ai := ⟨a1 · · · ai | a1, . . . , ai ∈ a⟩

(the smallest ideal which contains all these elements). For the second part,

let A be the set of all n-by-n upper-triangular matrices with entries in R.

You are allowed to use without proof that A is a unital ring. Let a be the

set of all the elements of A that have zero diagonal entries. Argue why a is

an ideal of A and an = 0. For the third part, argue why

[Bn(R), Bn(R)] ⊆ Un(R).)
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