1 Homework 4.

1. Suppose $D_{2 n}$ is a dihedral group. Prove that there exists a splitting SES of the form $1 \rightarrow C_{n} \rightarrow D_{2 n} \rightarrow C_{2} \rightarrow 1$ where C_{k} is the cyclic group of order k.
2. Suppose G is a group.
(a) Show that if N_{1} and N_{2} are normal subgroups of G and $N_{1} \cap N_{2}=\{1\}$, then for all $x_{1} \in N_{1}$ and $x_{2} \in N_{2}, x_{1} x_{2}=x_{2} x_{1}$.
(b) Suppose N_{1}, \ldots, N_{k} are normal subgroups of G and $N_{i} \cap N_{i}=\{1\}$ for all $i \neq j$. Prove that

$$
f: \prod_{i=1}^{k} N_{i} \rightarrow N_{1} \cdots N_{k}, \quad f\left(x_{1}, \ldots, x_{k}\right):=x_{1} \cdots x_{k}
$$

is a group homomorphism.
(c) Suppose N_{1}, \ldots, N_{k} are normal subgroups of G, and for all i,

$$
N_{i} \cap N_{1} \cdots N_{i-1} N_{i+1} \cdots N_{k}=\{1\} .
$$

Prove that

$$
f: \prod_{i=1}^{k} N_{i} \rightarrow N_{1} \cdots N_{k}, \quad f\left(x_{1}, \ldots, x_{k}\right):=x_{1} \cdots x_{k}
$$

is a group isomorphism.
3. Suppose in a finite group G for every proper subgroup $H, H \subsetneq N_{G}(H)$.
(a) Prove that all the Sylow subgroups of G are normal. Deduce that for all prime divisors of $|G|, G$ has a unique Sylow p-subgroup.
(b) Prove that $G \simeq \prod_{p \text { prime factor of }|G|} P_{p}$ where P_{p} is the unique Sylow p-subgroup of G.
(Hint. Use $N_{G}\left(N_{G}(P)\right)=N_{G}(P)$ for every Sylow subgroup P, and the previous problem.)
4. Suppose G is a finite group and A is a normal abelian subgroup of G. Let $s: G / A \rightarrow G$ be a section of the natural projection map; that means for all $h \in G / A$, we choose an element $s(h)$ from the coset h. Alternatively we can say that $s(h) A=h$. Notice that if s is a group homomorphism, then the standard SES $1 \rightarrow A \rightarrow G \rightarrow G / A \rightarrow 1$ splits. The goal of this exercise is to modify s and make it into a group homomorphism under suitable assumptions. Let $H:=G / A$ and define the function

$$
c: H \times H \rightarrow A, \quad c\left(h_{1}, h_{2}\right):=s\left(h_{1}\right) s\left(h_{2}\right) s\left(h_{1} h_{2}\right)^{-1} .
$$

Notice that since $s\left(h_{1} h_{2}\right) A=h_{1} h_{2}=s\left(h_{1}\right) A s\left(h_{2}\right) A=s\left(h_{1}\right) s\left(h_{2}\right) A$, the image of c is indeed in A. Function c gives us an insight on how far s is from being a group homomorphism. Notice that since A is abelian, the conjugation action of G on A factors through an action of H. More precisely, for all $h \in H$ and $a \in A$, let

$$
h \cdot a:=s(h) a s(h)^{-1},
$$

and notice that this is a well-defined group action.
(a) Prove that, for all $h_{1}, h_{2}, h_{3} \in H$, we have

$$
c\left(h_{1}, h_{2}\right) c\left(h_{1} h_{2}, h_{3}\right)=\left(h_{1} \cdot c\left(h_{2}, h_{3}\right)\right) c\left(h_{1}, h_{2} h_{3}\right) .
$$

(Since A is abelian, it is more customary to write this equation in an additive notation:

$$
c\left(h_{1}, h_{2}\right)+c\left(h_{1} h_{2}, h_{3}\right)=h_{1} \cdot c\left(h_{2}, h_{3}\right)+c\left(h_{1}, h_{2} h_{3}\right),
$$

and this is called the 2-cocycle relation.)
(b) Prove that the standard SES $1 \rightarrow A \rightarrow G \rightarrow H \rightarrow 1$ splits if and only if there exists a function $b: H \rightarrow A$ such that

$$
c\left(h_{1}, h_{2}\right)=b\left(h_{1}\right)\left(h_{1} \cdot b\left(h_{2}\right)\right) b\left(h_{1} h_{2}\right)^{-1} .
$$

(Again it is customary to write this equation in an additive notation:

$$
c\left(h_{1}, h_{2}\right)=b\left(h_{1}\right)+h_{1} \cdot b\left(h_{2}\right)-b\left(h_{1} h_{2}\right) .
$$

This is called a 2-coboundary.)
(c) In the above setting, assume that $\operatorname{gcd}(|A|,|H|)=1$. Prove that every 2-cycle is a 2-boundary. Deduce that the standard SES

$$
1 \rightarrow A \rightarrow G \rightarrow H \rightarrow 1
$$

splits.

(Hint.

(a) Since $s\left(h_{1}\right) s\left(h_{2}\right)=c\left(h_{1}, h_{2}\right) s\left(h_{1} h_{2}\right)$, we have

$$
\begin{aligned}
\left(s\left(h_{1}\right) s\left(h_{2}\right)\right) s\left(h_{3}\right) & =c\left(h_{1}, h_{2}\right) s\left(h_{1} h_{2}\right) s\left(h_{3}\right) \\
& =c\left(h_{1}, h_{2}\right) c\left(h_{1} h_{2}, h_{3}\right) s\left(h_{1} h_{2} h_{3}\right) .
\end{aligned}
$$

We also have

$$
\begin{aligned}
s\left(h_{1}\right)\left(s\left(h_{2}\right) s\left(h_{3}\right)\right) & =s\left(h_{1}\right) c\left(h_{2}, h_{3}\right) s\left(h_{2} h_{3}\right)=\left(h_{1} \cdot c\left(h_{2}, h_{3}\right)\right) s\left(h_{1}\right) s\left(h_{2} h_{3}\right) \\
& =\left(h_{1} \cdot c\left(h_{2}, h_{3}\right)\right) c\left(h_{1}, h_{2} h_{3}\right) s\left(h_{1} h_{2} h_{3}\right) .
\end{aligned}
$$

(b) Notice that this SES splits if and only if there exists a function b : $H \rightarrow A$ such that $\psi(h):=b(h)^{-1} s(h)$ is a group homomorphism. For all $h_{1}, h_{2} \in H$, we have

$$
\begin{aligned}
\psi\left(h_{1}\right) \psi\left(h_{2}\right) \psi\left(h_{1} h_{2}\right)^{-1} & =b\left(h_{1}\right)^{-1} s\left(h_{1}\right) b\left(h_{2}\right)^{-1} s\left(h_{2}\right) s\left(h_{1} h_{2}\right)^{-1} b\left(h_{1} h_{2}\right) \\
& =b\left(h_{1}\right)^{-1}\left(h_{1} \cdot b\left(h_{2}\right)\right)^{-1} c\left(h_{1}, h_{2}\right) b\left(h_{1} h_{2}\right) .
\end{aligned}
$$

Hence, the given SES splits precisely when

$$
c\left(h_{1}, h_{2}\right)=\left(h_{1} \cdot b\left(h_{2}\right)\right) b\left(h_{1}\right) b\left(h_{1} h_{2}\right)^{-1} .
$$

(c) Use the additive notation for the abelian group A. Since $\operatorname{gcd}(|A|,|H|)=$ 1 , for every $a \in A$ there exists a unique $y \in A$ such that $|H| y=a$. Denote this element by $\frac{a}{|H|}$. Suppose c is a 2-cocyle and let

$$
b: H \rightarrow A, \quad b(x):=\frac{\sum_{h \in H} c(x, h)}{|H|} .
$$

Adding over the h_{3} term in the 2-cocycle relation, deduce that

$$
|H| c\left(h_{1}, h_{2}\right)+|H| b\left(h_{1} h_{2}\right)=|H|\left(h_{1} \cdot b\left(h_{2}\right)\right)+|H| b\left(h_{1}\right),
$$

and so c is a 2 -coboundary.)
5. In this problem, you will show that S_{6} has an automorphism which is not an inner automorphism.
(a) Show that S_{5} has 6 Sylow 5 -subgroups.
(b) Use the action of S_{5} on $\operatorname{Syl}_{5}\left(S_{5}\right)$ and show that S_{6} has a subgroup H which is isomorphic to S_{5} and for every $\sigma \in S_{6}, \operatorname{Fix}\left(\sigma H \sigma^{-1}\right)=\varnothing$ where S_{6} acts on $\{1, \ldots, 6\}$.
(c) Consider the action $S_{6} \curvearrowright S_{6} / H$ by left-translations. Argue that this action induces a group homomorphism $\theta: S_{6} \rightarrow S_{6}$. Prove that $\operatorname{Fix}(\theta(H)) \neq \varnothing$.
(d) Deduce that $\operatorname{Aut}\left(S_{6}\right) \neq \operatorname{Inn}\left(S_{6}\right)$.
(In this problem you are allowed to use the fact that if N is a normal subgroup of $S_{n},\left[S_{n}: N\right]>2$, and $n \geq 5$, then $N=\{1\}$.)
6. Prove that a group of order 36 is not simple.
(Hint. Suppose G is simple. Find the number of Sylow 3-subgroups of G. Consider the action of G on $\operatorname{Syl}_{3}(G)$. Prove that the kernel of this action cannot be trivial.)
7. Suppose N and H are two groups and $f_{1}, f_{2}: H \rightarrow \operatorname{Aut}(N)$ are two group homomorphisms.
(a) Suppose $\theta: N \rtimes_{f_{1}} H \rightarrow N \rtimes_{f_{2}} H$ is an isomorphism such that the following is a commutative diagram.

Let $\sigma: H \rightarrow \operatorname{Aut}(N), \quad \sigma(h):=f_{2}(h) \circ f_{1}(h)^{-1}$. Prove that $\sigma(h)$ is an inner automorphism of N for all $h \in H$.
(b) In the setting of part (a), prove that

$$
\sigma\left(h_{1} h_{2}\right)=\sigma\left(h_{1}\right) \circ f_{1}\left(h_{1}\right) \circ \sigma\left(h_{2}\right) \circ f_{1}\left(h_{1}\right)^{-1} .
$$

(c) Suppose there exists $\bar{\theta} \in \operatorname{Aut}(H)$ such that $f_{1}=f_{2} \circ \bar{\theta}$. Prove that there exists an isomorphism $\theta: N \rtimes_{f_{1}} H \simeq N \rtimes_{f_{2}} H$ such that the following is a commutative diagram.

(Hint. For parts (a) and (b), argue that there exists a function $n: H \rightarrow N$ such that $\theta(1, h)=(n(h), h)$. Consider $\theta\left((1, h)(n, 1)(1, h)^{-1}\right)$. For part (c), let

$$
\left.\theta: N \rtimes_{f_{1}} H \simeq N \rtimes_{f_{2}} H, \quad \theta(n, h):=(n, \bar{\theta}(h)) .\right)
$$

