In the previous lecture we proved that

\[D \text{ is a UFD } \iff D[x_1, \ldots, x_n] \text{ is a UFD.} \]

So by induction we have

\[D \text{ is a UFD } \iff D[x_1, \ldots, x_n] \text{ is a UFD.} \]

We also proved that:

\[D: \text{ UFD and } F: \text{ field of fractions of } D; \]

\[\frac{f(x)}{g(x)} \in D[x] \text{ primitive. Then} \]

\[f(x) \text{ is irreducible in } D[x] \iff f(x) \text{ is irr. in } F[x]. \]

Cor. Suppose \(f(x) \) cannot be written as a prod. of two
poly. of deg. < deg \(f \) in \((D_{\text{fr}})[x] \). Then \(f \) is irr. in \(F[x] \).

Pf. If not, \(f(x) = f_1(x) f_2(x) \) for some \(f_i(x) \in F[x] \setminus F \).

\[\Rightarrow \exists c_i \in F^* \text{ s.t. } f(x) = \frac{f_1(x)}{c_i} \cdot \frac{f_2(x)}{c_i} \]

\[\text{in } D[x] \text{ in } D[x] \]

\[\Rightarrow f(x) \equiv \overline{f_1(x)} \overline{f_2(x)} \text{ mod } \alpha \text{ which contradicts our assumption.} \]
Lecture 05: Irreducibility criteria

Friday, January 19, 2018 8:20 AM

Ex. Show that x^3+xy+y^2+x+1 is irreducible in $\mathbb{Q}[x,y]$.

Solution. Let's consider $\mathbb{Q}[x,y] \rightarrow \mathbb{Q}[x]$.

$p(x,y) \mapsto p(x,0)$

Then, by the 1st isomor. theorem, $\mathbb{Q}[x,y]/\langle y \rangle \cong \mathbb{Q}[x]$.

And $p(x) := x^3+xy+y^2+x+1$ is mapped to x^3+x+1.

Claim. x^3+x+1 is irreducible in $\mathbb{Q}[x]$.

Pf. If not, it should have a factor of deg. 1; this implies x^3+x+1 has a rational root η_s. By an exercise you know that $r \mid 1$ and $s \mid 1$. So $\eta_s = \pm 1$.

But $(\pm 1)^3 + (\pm 1) + 1 \neq 0$.

Hence by the above claim and the previous corollary we are done. ■

Thm (Eisenstein's criterion) Suppose D is an integral domain, $\mathfrak{p} \in \text{Spec}(D)$, $a_{n-1}, \ldots, a_0 \in \mathfrak{p}$ and $a_0 \notin \mathfrak{p}^2$. Then $x^n+a_{n-1}x^{n-1}+\ldots+a_0$ is irreducible in $D[x]$.
Lecture 05: Irreducibility criteria

Friday, January 19, 2018 8:35 AM

pf. Suppose \(f(x) = x^n + a_{n-1}x^{n-1} + \ldots + a_0 \) is not irreducible. Since it is monic, \(f(x) = f_1(x)f_2(x) \) and \(\deg f_1 < \deg f \).

\[\Rightarrow f(x) \equiv f_1(x)f_2(x) \pmod{\mathfrak{p}} \]

\[\Rightarrow x^n \equiv f_1(x)f_2(x) \pmod{\mathfrak{p}} \]

\[\Rightarrow f_1(0) \text{ and } f_2(0) \in \mathfrak{p} . \]

\[\Rightarrow a_0 = f_1(0)f_2(0) \in \mathfrak{p}^2 \text{ which is a contradiction. } \]

Ex. \(x^n + \ldots + x + 1 = 0 \) is irreducible in \(\mathbb{Q}[x] \) if \(\mathfrak{p} \) is a prime.

pf. \(f(x) = \frac{x^p-1}{x-1} \Rightarrow f(x+1) = \frac{(x+1)^p-1}{x} \]

\[= x^{p-1} + \binom{p}{1}x^{p-2} + \ldots + \binom{p}{p-1}x + \ldots \]

It satisfies the Eisenstein criterion’s condition.

Ex. \(x^n + p \in \mathbb{Z}[x] \) is irreducible if \(p \) is an odd prime.

pf. Suppose \(a + ib \) is an irreducible factor of \(p \). Then

\[a^2 + b^2 \mid p^2 \Rightarrow \text{ either } a^2 + b^2 = p^2 \text{ or } a^2 + b^2 = p . \]

In the first case, \(a + ib \mid p \). In the second case
Lecture 05: Irreducibility criteria

Friday, January 19, 2018 8:46 AM

\[p = (a+ib)(a-ib) \] and \((a+ib)^2 \nmid p \) (why?)

So one can use the Eisenstein criterion.

Hint: If \(a^2 + b^2 = p \), then \(a \pm ib \) are irreducible.

Show \(a+ib \sim a-ib \), implies \(p = 2 \).

Next we prove an extremely important theorem:

Theorem. Suppose \(A \) is a unital commutative ring.

If \(A \) is Noetherian, then \(A[x] \) is Noetherian.

Corollary. A finitely generated \(k \)-algebra \(A \) where \(k \) is a field is Noetherian.

Proof. Suppose \(A = k[x_1, \ldots, x_n] \). Then \(k[x_1, \ldots, x_n] \to A \)

\[x_i \mapsto a_i \]

is an onto ring homomorphism. Hence \(A \cong k[x_1, \ldots, x_n] / \mathfrak{m} \).

By the previous theorem, \(k[x_1, \ldots, x_n] \) is Noeth.; Hence any of its quotients is Noeth.

(An ideal of \(R/I \) is of the form \(k/I \) where \(k \subseteq R \) and \(I \subseteq \mathfrak{m} \). So if \(R \) is Noeth., then \(k \) is \(\mathfrak{m} \); therefore \(k/I \) is \(\mathfrak{m} \).)
Lecture 05: Beginning of proof of Hilbert's basis theorem

Friday, January 19, 2018 11:23 AM

Pf. Let \(\mathfrak{a} \) be a non-zero ideal of \(A[x] \). We'd like to show \(\mathfrak{a} \) is f.g. (When \(A \) is a field, we use long division to show, any ideal of \(A[x] \) is principal. The key idea of long division is cancelling out the leading term of \(a_nx^n \ldots \) by a multiple of \(g(x) \), and then continue this process. And we could do it as \(a_n \) is in the ideal gen. by the leading coeff. of \(g \). Now we'd like to follow a similar idea and get rid of leading term.)

Let \(\text{ld}(\mathfrak{a}) := \{ a \in A \mid \exists \ a_nx^n \ldots \in \mathfrak{a} ; \ a \neq 0 \} \). \(\text{ld}(\mathfrak{a}) \) is an ideal of \(A \).

\[a, a' \in \text{ld}(\mathfrak{a}) \implies \exists \ a_nx^n \ldots \in \mathfrak{a} \implies \exists \ a'x^m \ldots \in \mathfrak{a} \]

\[x^m (a_nx^n \ldots) + x^n (a'x^m \ldots) = (a+a')x^{m+n} \ldots \in \mathfrak{a} \]

So either \(a+a'=0 \in \text{ld}(\mathfrak{a}) \) or \(a+a' \) is a leading coeff. of an elem. of \(\mathfrak{a} \) \(\implies \) in either case \(a+a' \in \text{ld}(\mathfrak{a}) \).
Lecture 05: Beginning of proof of Hilbert's basis theorem

Friday, January 19, 2018 11:37 AM

\[ae \in \text{ld}(\mathcal{V}) \implies \exists \ ax^r + \ldots \in \mathcal{V} \implies r(ax^r + \ldots) = (ra)x^r + \ldots \in \mathcal{V} \]

\[\therefore \text{ld}(\mathcal{V}) = \text{ra} \implies ra \in \text{ld}(\mathcal{V}). \]

Since \(A \) is Noetherian, \(\exists a_1, \ldots, a_m \in A \) s.t. \(\text{ld}(\mathcal{V}) = \langle a_1, \ldots, a_r \rangle \). As \(a_i \in \text{ld}(\mathcal{V}) \), \(\exists f_i : ax = a_i x^n + \ldots \in \mathcal{V} \).

(we will use \(f_i \)'s to clear leading terms till we get to a polynomial of deg \(< \max \{n_i\} \); to access these polynomials we consider the following sets:)

For any \(m \in \mathbb{Z}^+ \), let

\[\text{ld}_m(\mathcal{V}) := \{ a \in A \mid \exists ax^m + \ldots \in \mathcal{V} \} \mathcal{V} = U \mathcal{V}_o. \]

Then \(\text{ld}_m(\mathcal{V}) \) is an ideal of \(A \).

- \(a, a' \in \text{ld}_m(\mathcal{V}) \implies \exists ax^m + \ldots \in \mathcal{V} \implies (a+a')x^m + \ldots \in \mathcal{V} \implies a+a' \in \text{ld}_m(\mathcal{V}) \)

- \(a \in \text{ld}_m(\mathcal{V}) \implies \exists ax^m + \ldots \in \mathcal{V} \implies r(ax^m + \ldots) = (ra)x^m + \ldots \in \mathcal{V} \implies ra \in \text{ld}_m(\mathcal{V}) \).

(In the next lecture, we will continue.)