We were proving the following theorem:

Theorem. Let F be a field. Then there is a field extension E/F such that E is algebraically closed.

Pf. Let $A := F[x_f]_{f: \text{monic}, f \in \text{Fns}(F)}$ and $I = \langle f(x_f) | f: \text{monic}, f \in \text{Fns}(F) \rangle$.

Claim. I is a proper ideal.

Pf. If not, $1 \in I$. So $\exists g_1, \ldots, g_m \in A$ and f_1, \ldots, f_m s.t.

$$g_1(x_{f_1}) f_1(x_{f_1}) + \ldots + g_m(x_{f_m}) f_m(x_{f_m}) = 1.$$

To make symbols more clear, let $y_i = x_{f_i}$ and y_{m+1}, \ldots, y_n be the rest of variables involved in g_i’s. So

$$g_1(y_1, \ldots, y_n) f_1(y_1) + \ldots + g_m(y_1, \ldots, y_n) f_m(y_m) = 1. \quad (\ast)$$

Let E' be the splitting field of $f_1(t) f_2(t) \ldots f_m(t)$ over F.

And let $\alpha_1, \ldots, \alpha_m \in E'$ s.t. $f_1(\alpha_1) = f_2(\alpha_2) = \ldots = f_m(\alpha_m) = 0$.

Let’s evaluate \ast at $(\alpha_1, \ldots, \alpha_m, 0, \ldots, 0)$; and we get $0 = 1$,

which is a contradiction.

Let \mathfrak{m} be a maximal ideal of A s.t. $\mathfrak{m} \supseteq I$. Let $E_1 := A/\mathfrak{m}$.

So E_1 is a field; and $F \cap \mathfrak{m} = 0$ implies $F \hookrightarrow E_1$.

Lecture 24: Tower of algebraic extensions

Thursday, March 1, 2018 8:36 PM

Claim. Any monic polynomial $f(x) \in F[x] \setminus F$ has a zero in E_1.

Pf. Let $\alpha_1 := x_1 + \theta \in E_1$. Then $f(\alpha_1) = f(x_1) + \theta = \theta \in \theta \setminus \theta$.

We do the same construction again and again to get a tower of field extensions: $F \subseteq E_1 \subseteq E_2 \subseteq \ldots$

Let $E := \bigcup_{i=1}^{\infty} E_i$.

Claim. E is a field.

Pf. $\alpha \in E$, $\beta \in E \setminus \theta \Rightarrow \exists i \text{ st. } \alpha \in E_i$ and $\beta \in E_i \setminus \theta$.

So $\alpha \pm \beta$, $\alpha \beta^{\pm 1} \in E_i \Rightarrow \alpha \pm \beta$, $\alpha \beta^{\pm 1} \in E$.

Claim. E is algebraically closed.

Pf. Let $f(x) := \sum a_i x^i \in E[x]$. Then $\exists j \text{ st. } f(x) \in E_j[x]$.

$\Rightarrow f(x)$ has a zero in $E_{j+1} = f(x)$ has a zero in E.

Proposition. Suppose E/F and K/E are algebraic extensions. Then K/F is an algebraic extension.

Pf. Let $\alpha \in K$. Then $\alpha^n + e_{n-1} \alpha^{n-1} + \ldots + e_0 = 0$ for some e_i's $\in E$.

Since e_i's are algebraic over F, $[F(e_0, \ldots, e_{n-1} : F) < \infty$.

Since α is algebraic over $F(e_0, \ldots, e_{n-1})$,

$[F(e_0, \ldots, e_{n-1}, \alpha : F(e_0, \ldots, e_{n-1})] < \infty$. Hence $F(e_0, \ldots, e_{n-1}, \alpha) \subseteq F$ is a finite extension. Therefore α is algebraic over F. \qed
Theorem. Let F be a field. Then there is an algebraically closed field extension E/F such that E is algebraically closed.

Proof. Let \tilde{E}/F be a field extension such that \tilde{E} is algebraically closed (there is such a field by the previous theorem). Let E be the algebraic closure of F in \tilde{E}. So E/F is an algebraic field extension.

Claim E is algebraically closed.

Proof. Let $f(\alpha) \in E[x]$. Since \tilde{E} is algebraically closed, $\exists \alpha \in \tilde{E}$ s.t. $f(\alpha) = 0$. So $E[\alpha]/F$ is algebraic. Since E/F is algebraic, by the previous proposition we deduce that $E[\alpha]/F$ is algebraic. Hence α is algebraic over F; this implies $\alpha \in E$; and claim follows.

Definition. We call E an algebraic closure of F if E/F is algebraic and E is algebraically closed.

So far we have proved the existence of an algebraic closure. Next we show it is unique up to isomorphism.
Theorem. (1) Let F be a field and Ω be an algebraically closed field. Suppose E is the splitting field of $f \in \text{Fix}\Omega \setminus F$ over F; and $\sigma : F \to \Omega$. Then $\exists \bar{\sigma} : E \cong \Omega$ s.t. $\bar{\sigma}|_F = \sigma$.

(2) Let E and E' be two algebraic closures of F, and $\sigma' : F \to E'$. Then $\exists \phi : E \cong E'$ s.t. $\phi|_F = \sigma'$.

Proof. (1) Since Ω is algebraically closed, $\sigma(f)(x) = (x-\omega_1) \cdots (x-\omega_n)$ for some $\omega_1, \ldots, \omega_n$. Then $E' := \sigma(F)[\omega_1, \ldots, \omega_n]$ is the splitting field of $\sigma(f)$ over $\sigma(F)$. Hence $\exists \bar{\sigma} : E \cong E \subseteq \Omega$ s.t. $\bar{\sigma}|_F = \sigma$.

(2) Let $\Sigma := \{(K, \sigma) \mid F \subseteq K \subseteq E, \sigma : K \to E', \text{subfield}\sigma|_F = \sigma\}$. We say $(K_1, \sigma_1) \preceq (K_2, \sigma_2)$ if and only if $K_1 \subseteq K_2$ and $\sigma_2|_{K_1} = \sigma_1$. (Σ, \preceq) is a POSet.

Claim. Σ has a maximal element.

Proof. By Zorn’s lemma, it is enough to show any chain has an upper bound. Suppose $\{K_i, \sigma_i\}_{i \in I}$ is a chain. Let $K := \bigcup_{i \in I} K_i$ and
\(\sigma : K \to E', \quad \sigma'(a) = \sigma_i(a) \) if \(a \in K_i \). Notice that \(\sigma' \) is well-defined.

if \(a \in K_i \) and \(a \in K_j \), as \(\mathcal{S}(K_i, \sigma_i) \) is a chain, w.l.o.g.
we can and will assume \((K_i, \sigma_i) \triangleleft (K_j, \sigma_j) \). Hence \(K_i \subseteq K_j \)
and \(\sigma_j |_{K_i} = \sigma_i \). And so \(\sigma_j(a) = \sigma_i(a) \).

Show that \(\bigcup_{i \in I} K_i \) is a field.

\(\forall a \in F \subseteq K_i \) (\(\forall i \in I \)), \(\sigma'(a) = \sigma_i(a) = a \).

Hence \((K, \sigma') \in \Sigma \) and \((K_i, \sigma_i) \triangleleft (K, \sigma) \) for any \(i \in I \).

Therefore \((\Sigma, \triangleleft) \) has a maximal element. Suppose \((K, \sigma') \) is a maximal element of \(\Sigma \).

Claim. \(K = E \).

(We will prove this in the next lecture.)