Math200b, lecture 13

Golsefidy

Tensor product.

In the previous lecture we proved Yoneda’s lemma which
says there is a (natural) bijection between Nat(h®, G) and G(a).
Now we want to use the idea of Yoneda’s proof to show for
an (A, B)-bimodule M and a left B-module N, there is a left

A-module F(M, N) and a natural transformation
1 hFMN) _ pN o pM

such that n is an isomorphism for any left A-module L. By

Yoneda’s lemma we know that 1 is uniquely determined by an



element f; € h™ o h"M(F(M, N)) using the following diagram:

RFMN)() T s WNM(L)) & —— dhofy

h”M’N)(cb)T hN(hM((d>)))T T T

hFOUNEM, N)) =25 RNRMEM, N))) - Lo > o,

So we need to understand elements of h™(h™M(L)); specially
since we do not know what F(M, N) is.
Suppose ¢ € hN(hM(L)) = Homp(N, Homa (M, L)); let

lp : M XN — L 1p(m,n) := ((n))(m).
Then
(a) (Linearin N)
lp(m, iy — 1) =(d(n1 — n2))(m) = (d(n1) — d(n2))(m)
=($(n1))(m) — (¢(n2))(m) =
=lp(m, ny) — lp(m, no).
(b) (A-Linear in M)

1¢(a1m1 + axmy, ) =(p(m))(a;my + aymy)

=a;(p(n))(my) + ax(p(n))(m,)

=a11¢(m1, Tl) + a21¢(m2, Tl)
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(c) (B-balanced)

Lp(m, b -n) =(d(b - n))(m) = (b - d(n))(m)
=(d(M))(m-b) = lp(m - b, n).

One can easily see that the converse of this statement holds as

well and we get

Proposition 1 The following is a bijection from Homg(N, Homa (M, L))

and
BmN(L) = {l: MXN — L|linear in N, A-linear in M, B-balanced};

¢ = 1y where ly(m,n) = (d(n))(m). We denote its inverse by
L= &y and so (G1(n))(m) = Um, n).

(Exercise: check the converse.)

So we need to find a left A-module F(M,N) and 1, €
BmN(F(M, N)) such that for any 1 € By n(L) there is a unique
¢ € Homa(F(M,N),L) such that 1 = ¢ o l;: for | we get
¢ € WN(hWM(L)), and so it is supposed to be ¢ o fy for some
unique ¢ € Homa(F(M, N), L); this means ¢ = ¢ o f, which
implies that L = ¢ o 1.



So (F(M, N), ly) should have the following universal prop-
erty: foranyl € By n(L) thereisaunique ¢ € Homa(F(M, N), L)

such that the following diagram commutes:
o
|
&
L
\V
L

Theorem 2 Foran (A, B)-bimodule M and a left B-module N, there

is a unique A-module F(M, N) and 1, € B N(F(M, N)) such that

the above universal property holds.

Proof. (Existence) Let F(M X N) be the free A-module generated
by the set M X N. Next we go to the largest quotient of F(M X N)
such that (m,n) — [(m,n)] becomes B-balanced, A-linear in
M, and linear in N. So we let K be the A-submodule of F(M XN)
that is generated by

(m-b,n)—(m,b-n) (B-balanced)
(aymy + asms, n) — a;(my,n) — as(my, n) (A-linear in M)

(m,n; —ny) — (M, ny) + (M, ny) (linear in N)

4



for any m,m;.my € M, n,n;,ny € N, aj,a; € Aand b € B.
And let F(M, N) := F(M X N)/K, and

ly: M XN — F(M,N),lo(m, TL) = [(m, TL)]

Then 1 is in B N(F(M,N)). Suppose 1 € Bmn(L). By the
universal property of free modules, there is an A-module ho-
momorphism $ : F(M x N) — L such that $(m, n) := (m,n).
Since 1 € Bm (L), we can check that all the generators of
K are in ker ¢. Hence there is an A-module homomorphism
¢ : F(M,N) — L such that ¢([(m,n)]) = @(m, n) = (m,n);
and so ¢ o1y = 1. Since F(M, N) is generated by the image
of 1y, ¢ is uniquely determined by its values at ly(m, n)’s; this
implies the uniqueness of ¢ in the universal property.
(Uniqueness) Suppose (Fy, lél)) and (Fs, 182)) both satisfy the
mentioned universal property. Because of the universal prop-

erty, idr, is the unique A-module homomorphism from F; to F;



such that the following diagram commutes.

—r1
=

<

X
/Z\/
Tdompoe

Since Fi’s satisfy the universal property, there are A-module
homomorphisms ¢; : F; — Fp and ¢» : Fo» — F; such that the

following diagram commutes

F
1 N
||
11
M x N s || 1
(2) I
N |
||
N
Fs

And so ¢; o ¢y and ¢y o P are identities, which implies that
they are isomorphisms. u
The unique A-module F(M, N) given in the above theorem is
called the tensor product of M and N over B and it is denoted
by M ® N. And ly(m,n) is denoted by m ® n and it is called
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a pure tensor element.

To avoid confusion of all the involved left and right module
structures, one can use the following notation: Mg (for (A, B)-
bimodule) and gN (for left B-module), now B’s can help us glue

these modules and end up getting a left A-module:
AMgp — —gN ~» AsM ®g N.
Similarly one can define for a right A-module P one can define
PA = —=aAMg ~» P ®x Mg

which is a right B-module.

Let us summarize what we have proved:

Theorem 3 Suppose AMg is an (A, B)-bimodule and gN is a left
B-module. Then there is a unique left A-module M ®g N that is

generated by elements {m ® N}memneN such that

(a) (m,n) » m®n isamap from M X N to M ®g N that is

B-balanced, A-linear in M, and linear in N.

(b) (Tensor-Hom adjunction) There is a natural isomorphism
n : WM&N — WNohM. alternatively we say Homa(M®gN, L)
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is naturally isomorphic to Homg(N, Homa (M, L)) for any left
A-module L.

(c) (Universal Property) For any B-balanced, A-linear in M,
and linear in N, function 1 : M X N — L there is a unique
¢ : M ®g N — Lsuch that (m,n) = (M n).

Corollary 4 Suppose AMg is an (A, B)-bimodule and gN is a left
B-module. If M is a projective A-module and N is a projective

B-module, then M ®g N is a projective A-module.

Proof. Since AM is projective and A Mg is a bimodule, hM is an
exact functor from left A-mod to left B-mod. Since gN is a
projective B-module, h™ is an exact functor from left B-mod
to Ab. Hence h" o hM is an exact functor from left A-mod to
Ab. |

The above corollary is particularly strong when A is a com-
mutative ring. In this case, any module is both left and right
A-module. Hence we can always talk about tensor product of
two A-modules, and we get that tensor product of two projec-
tive A-modules is a projective A-module. So one can consider

the set Ko(A) (in what sense?) of finitely generated projective
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A-modules up to isomorphism and define a semigroup struc-
ture on this set using tensor product. As you have seen in
your HW assignment, any (f.g.) projective module is locally
free. In math200c we focus on a subset of Ko(A) that consists
of (locally rank 1) invertible elements; this is called the Picard
group Pic(A) of A.

In general it might be tricky to find various properties of a
tensor product. Here is one example which shows how torsion
elements might get killed in the tensor product.

Example. Show Q ®z Q/Z = 0.

Proof. Since Q®zQ/Z. is generated by pure tensor elements,
it is enough to show all pure tensor elements are zero. For any
reQ, m,neZ)\{0} wehave

T® (%1 + Z) = ne (m + Z) Z-balanced

n

®n(n—1+Z)
n

® 0.

SlI=3l=3l=

In any tensor product a®0 = 0; and thisisbecause a®0+a®0 =
a® (0+0) =a®0 (bilinear). And claim follows. H



