Math200b, lecture 14

Golsefidy

Tensor product: an example.

In the previous lecture we proved various properties of
tensor product of two modules. We also mentioned that in
general it is not that easy to describe various algebraic aspects
of a tensor product; but certain examples play central role in

this regard. Here is one of them:

Proposition 1 Suppose oM is a left A-module and a < A. Then

A M
- M~ —
a®A aM

as A-modules (or A /a-module).



(Notice that A /a can be considered an (A /a, A)-bimodule; and
since a(M/aM) = 0, M/aM can be considered a left A/a-

module.)
Proof. Let 5 M > Ala®s M, $(m) '=1® m. Then

b(aym + a;my) =1 ® (a;my + agmy) (linear in M)
=(1®amy) + (1 ® asmy) (A-balanced)
=((a; +a)®my) + ((az + a) ® my) (A-linear)
=a1(1 ® my) + as(1 ® my)

:a1$(m1) + az@(mz)

And so0 ¢ is an A-module homomorphism. Notice that for any

a € a and m € M we have
$(am):1®am:(a+a)®m:()®m:().

Hence aM C ker $; and so
b:M/aM - AJa®a M, p(m+aM) =1 m

is a well-defined (injective) A-module homomorphism. Next
we use the universal property of tensor product to define an

A-module homomorphism in the other direction.
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Letf: A/axM — M/aM, f(a+a,m):= am+aM.
Well-definedness. Suppose a + a = a’ + a; then

a—dea=>(a—d)meaM = am—a'meaM.

It is even easier to check that f is A-balanced, A-linear in A /a,
and linear in M. Hence by the universal property of tensor

product, there is
P:A/a®@aM — M/aM, P((a+a)®m) = f(a+a, m) = am+aM.

And so ¢(P((a+a) ® m)) = (a + a) ® m; since pure tensor ele-
ments generate the considered tensor product, ¢ o is identity.
We also have that ¢ o1 is identity; hence ¢ and 1 are isomor-
phisms. |

Example. Show that Z/n7Z ®z 7./ mZ. ~ 7./ gcd(m,n)Z (as

abelian groups).



Proof. By the previous proposition,

707 ®7 7,/ mZ. 2n(zz/;;zz)
B Z./]mZ.
- (NZ +mZ)/mZ
B Z./mZ.
~ged(m,n)Z/mZ
N Z
~ ged(m, n)Z’

|
Example. f: M — A ®4 M, f(m) := 1 ® mis an A-module
isomorphism. (This is an immediate consequence of the above

proposition; for a = 0.)

Base change.

Suppose ¢ : A — B is a ring homomorphism; then B can
be viewed as an (B, A)-bimodule: for a € A.b € B and x € B,
let x - a :=x0(a) and b - x := bx. So for any left A-module M,
we get a left B-module B ®3 M. We will see that it is in fact a
functor from left A-mod to left B-mod. This is called a base

change. Usually going the other direction is much harder;
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starting with a B-module and trying to realize it as a base
change of an A-module. This type of result is called descent.
For instance when F is a subfield of E and 0 : F — E is the

embedding F into E, this is part of Galois descent.

Tensor product as a functor.

Suppose AMp is an (A, B)-bimodule; then for any left B-
module N we get a left A-module M ®g N. Can we make this
into a functor from left B-mod to left A-mod? To get a functor,
we have to say what it does to homomorphisms. We prove a

stronger statement in this regard.

Proposition 2 Supposef € Homa g)(M, M’)and g € Homg(N, N’);
then there is a unique element of Homa(M ®g N, M” ®g N’) which
sends m @ n to f(m) ® g(n). We denote this homomorphism by
f®g.

Proof. We start with a B-balanced, A-linear in M, and linear
in N, function from M X N to M’ ® N’; and then use the
universal property of tensor product to get the desired A-

module homomorphism. Let



l:MXxN—- M @z N I(m,n):=f(m)® gn).

B-balanced.

l(m-b,n) =f(m-b) ® g(n) (right B-module hom)
=(f(m)-b)® g(n) (B-balanced)
=f(m) ® (b - g(n)) (left B-module hom)
=f(m) ® g(b - n)
=l(m,b-n).

A-linear in M.

W(a;my + asmy, n) =f(a;my + asmy) @ g(n)
=(a;f(my) + azf(mz)) ® g(n)
=a;(f(my) ® g(n)) + ax(f(mo) ® g(n))

=a;l(mq,n) + axl(my, n).



Linear in N.

(m, n; +ny) =f(m) ® g(n; +ny)
=f(m) ® (g(ny) + g(ny))
=f(m) ® g(n,) + f(m) ® g(ny)

=l(m, ny) + L(m, ny).

Hence by the universal property of tensor product there is a
unique A-module homomorphism T:MeN > M @ N
such that T(m ®n) = lm,n) = f(m)® g(n). H

Theorem 3 Suppose AMg is an (A, B)-bimodule; then
Ty : left B- mod — left A- mod

is a functor where for any left B-module N, Tm(N) := M ®g N and
for any f € Homg(N, N’), Tm(f) := idm ® f.

Proof. We have already showed that Tyi(N) is a left A-module,
and Tm(f) € Homa(M ®p N, M ®g N’). So it is enough to show
Tm(fy o fo) = Twm(f1) o Tm(f2) and Tm(idn) = idg, ). Since
pure tensor elements generate tensor product and Ty (f; o f9),

Tm(f1) o Tm(fe), and Ty(idn) are A-module homomorphisms,
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it is enough to check the claim equalities for pure tensor ele-

ments.

(Tm(f1) © Tm(f2))(m @ n) =Tm(f1)((idm ® f2)(m @ n))
=(idm ® f1)(m ® fa(n))
=m ® fi(f2(1))
=Tm(f1 o fo)(M @ n).

And Ty (idy)(m®n) = (idy ® idy)(M®n) = m@n. H

Tensor functor is right exact.

We have seen that Q/Z.®zQ = 0; this shows that Tgyz(j) = 0
where j : Z — Q. Notice that Tg,z(Z) = Q/Z ®2 7 = Q/Z,;
and so Tg,z(j) is not injective though j is injective. So Ty is not

necessarily left exact.

Theorem 4 (Tensor defines a right exact functor) Suppose M3z

is an (A, B)-bimodule; then
T.M; : left B- mod — left A- mod

is a right exact functor. (We often write Ty, instead of T,n,.)
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Proof. Suppose 0 — N; R N, AR N3 — 01is a S.E.S. of left B-

Tm(f Tm(f
modules. Then 0 — Tp(N;) 2 T (Ny) 2424 70 (N5) = 0

is a sequence of A-modules and A-module homomorphisms.
Since Tm(f2) o Tm(f1) = Tm(fy o f1) = 0, (it is a chain of A-
modules and) Im(Ty(f1)) C ker Tpm(f2). So thereis an A-module

homomorphism

6 - TM(N2)/Im(Tm(f1)) = Tm(N3), 8([x]) = Tm(f2)(x),

where [x]| := x + Im(Tpm(fy)); in particular 6(m ® ny]) = m ®
fo(ny) where [x] := x + Im(Tym(f1)).

It is enough to show 0 is an isomorphism.

By showing 0 is an isomorphism, we deduce that 0 is in-
jective; and so ker Tpm(fy) = Im(Tm(f1)). And surjectivity of ©
implies that Ty (f2) is surjective.

To show 0 is an isomorphism we will show that it has an
inverse. We start by defining a suitable function from M X N3
to Tm(N2)/Im(Tam(f1)); and then we use the universal property
of tensor product in order to find the inverse of 0.

Let 1 : M X N3 — Tpm(N2)/Im(Tpm (1)), L(m, n3) := [m ® nsy]

where n, € f5(ny).



Well-definedness. Suppose fa(n2) = fa(n3); thenny —nj €
ker f; = Im(f;). Hence m ® ny — m ® ni, € Im(Tm(f1)); and so
[m ® ny] = [m ® nj], which implies that | is well-defined.

B-balanced.

l(m-b,n3) =[(M-b) ®nsy]
=[m®b-ny] (since fy(b-ny)=Db-fr(ny) =b-ny)

=l(m,n - ny).

A-linear in M and linear in N3 are clear.
Hence by the universal property of tensor product, there is

an A-module homomorphism
b M ®g N3 — Tm(N2)/Im(Tm(f1)), b(m @ ng) = [m @ ny|,
where fy(ns) = n3. Notice that
Oop(men;) =6([memn]) =me f(ny) =men;,

for any m € M and n3. As pure tensor elements generate
the tensor product as an A-module, we deduce that 0 o is

identity. We also have
Pod([meny]) =h(m® fr(ny)) = [m®ns;
and so \{ o 0 is also identity. Therefore 0 is an isomorphism. B
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Corollary 5 (Flat modules) Suppose AMg is an (A, B)-bimodule.
Then the functor Ty is an exact functor if and only if Ty (f) is injective
for any injective homomorphism f. In this case, we say M is a flat

B-module.

Remark. As you can see, in the above definition, we say M
is a flat B-module and there is no mention of A. This might
need a justification that you will see in your HW assignment.
Here is the statement that you will prove: there is a natural

isomorphism between the functors

FOTAMB

TaMg F
left B-mod —— left A-mod ——— Ab

and

T/ Mg
left B-mod —— Ab

where F is the forgetful functor. Hence F o T 1, is exact if
and only if T,m, is exact. On the other hand, exactness of
a sequence of modules is determined at the level of abelian
groups; hence F o T,py, is exact if and only if T, is exact. So

overall we get
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T

Mg 1S exact © T, is exact.

And so flatness of M just depends on its B-module structure

and is independent of its A-module structure.

12



