
Math200b, lecture 15

Golsefidy

Associativity of tensor product.

For a ringA, let AM be the category of leftA-modules. Sup-
pose AMB is an (A,B)-bimodule, and BNC is a (B,C)-bimodule.
Then tensoring byM and N give us functors TM : BM→ AM

and TN : CM → BM; and so TM ◦ TN : CM → AM. We also
notice thatM ⊗BN is an (A,C)-bimodule; and so tensoring by
M ⊗BN gives us a functor TM⊗BN : CM→ AM. Next we show
that these are essentially the same functors.

Theorem 1 In the above setting there is a natural isomorphism

η : TM ◦ TN
∼−→ TM⊗BN.
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In fact, for any left C-module L, there is a natural isomorphism

ηL : M ⊗B (N ⊗C L) → (M ⊗B N) ⊗C L

such that ηL(m ⊗ (n ⊗ l)) � (m ⊗ n) ⊗ l.

Before we give a formal proof with more details, let us go over
an alternative approach which is essentially behind the our
formal argument as well:

SupposeMi is an (Ai,Ai+1)-bimodule for i ∈ [1..n]. Then
there is a left A1-module M and f0 : M1 × · · · ×Mn → M

such that the following property holds: suppose N is a left
A1-module and suppose

f : M1 × · · · ×Mn→ N

has the following properties: (1) A1-linear in M1, (2) linear
in Mi for any i, and (3) Ai-balanced for i ∈ [2..n − 1]. Then
there is a unique A1-module homomorphism φf : M → N

such that φf ◦ f0 � f, f0 has the same properties as f, andM is
generated by the image of f0 as an A1-module. One can show
that any ordering of tensor products ofMi’s satisfies the above
universal property; in particular all of them are isomorphic as
A1-modules andone can check that is it a natural isomorphism.
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Proof. Suppose L is a left C-module. For a given m0 ∈ M,
let

fm0 : N × L→ (M ⊗B N) ⊗C L, fm0(n, l) :� (m0 ⊗ n) ⊗ l.

One can check that fm0 is linear inN and L, andC-balanced.
Hence by the universal property of tensor product, there is an
abelian group homomorphism

φm0 : N ⊗C L→ (M ⊗B N) ⊗C L,φm0(n ⊗ l) � (m0 ⊗ n) ⊗ l.

Now let

f : M × (N ⊗C L) → (M ⊗B N) ⊗C N, f(m, x) :� φm(x);

in particular, f(m,n ⊗ l) � (m ⊗ n) ⊗ l. Notice that f is linear
in N ⊗C L as φm is an abelian group homomorphism. For any
n ∈ N and l ∈ L, we have

f(a1m1 + a2m2,n ⊗ l) �((a1m1 + a2m2) ⊗ n) ⊗ l
�(a1(m1 ⊗ n) + a2(m2 ⊗ n)) ⊗ l
�a1((m1 ⊗ n) ⊗ l) + a2((m2 ⊗ n) ⊗ l)
�a1f(m1,n ⊗ l) + a2f(m2,n ⊗ l).
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Since f is linear inN ⊗C L andN ⊗C L is generated by n ⊗ l’s as
an abelian group, the above equality implies that f is A-linear
inM.

For any n ∈ N and l ∈ L, we have

f(m · b,n ⊗ l) �((m · b) ⊗ n) ⊗ l
�(m ⊗ (b · n)) ⊗ l
�f(m, (b · n) ⊗ l)
�f(m,b · (n ⊗ l)).

Since f is linear in N ⊗C L, scalar multiplication by b is linear,
and N ⊗C L is generated by n ⊗ l’s as an abelian group, the
above equality implies that f is B-balanced. Hence by the
universal property of tensor product, there is an A-module
homomorphism

ηL : M⊗B(N⊗CL) → (M⊗BN)⊗CL,ηL(m⊗(n⊗l)) � (m⊗n)⊗l.

Similarly there is an A-module homomorphism

λL : (M⊗BN)⊗CL→M⊗B(N⊗CL), λL((m⊗n)⊗l) � m⊗(n⊗l).

As pure tensor elements generate tensor products as abelian
groups, the above equalities imply that ηL and λL are inverse
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of each other; and so ηL is an A-module isomorphism. It is
easy to check that ηL’s give us a natural transformation. �

An immediate consequence of the above theorem is the
following:

Proposition 2 SupposeMB is a flat right B-module and BNC is a
(B,C)-bimodule and a flat right C-module. ThenM ⊗B N is a flat
rightC-module. In particular ifA is a commutative ring andM and
N are two flat A-modules, thenM ⊗A N is a flat A-module.

Proof. SinceMB is a flat right B-module, TM : BM→ Ab is an
exact functor. Since BNC is a flat right C-module, TN : CM→
BM is an exact functor. And so TM◦TN : CM→ Ab is an exact
functor. By the above theorem there is a natural isomorphism
η : TM ◦ TN→ TM⊗BN; and so TM⊗BN is an exact functor, which
implies thatM ⊗B N is a flat right C-module.

For a commutative ring A, a left (or right) A-module is an
(A,A)-bimodule; and so the claim follows. �
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Tensor product and direct sum

Next we show that tensor product commutes with tensor
product. In your HW assignment you will see how using the
fact that there is a natural isomorphism

∏
i∈I h

Mi ' h⊕i∈IMi,
one can show h⊕i∈I(Mi⊗AN) ' h(⊕i∈IMi)⊗AN; this implies that⊕

i∈I
(Mi ⊗A N) ' (

⊕
i∈I

Mi) ⊗A N.

Here we prove this result for the case where the index set has
two elements.

Proposition 3 Suppose AMB is an (A,B)-bimodule and BN1 and

BN2 are two left B-modules. Then the following is a commutating
diagram and f is an isomorphism of left A-modules.

0 M ⊗B N1 M ⊗B (N1 ⊕ N2) M ⊗B N2 0

0 M ⊗B N1
(M ⊗B N1)⊕
(M ⊗B N2)

M ⊗B N2 0

idM⊗j1

id

idM⊗p2

f
id

j1 p2

where f(m ⊗ (n1,n2)) � (m ⊗ n1,m ⊗ n2); in particular the first
row is a S.E.S..
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Proof. Let l : M × (N1 ⊕ N2) → (M ⊗B N1) ⊕ (M ⊗B N2),

l(m, (n1,n2)) :� (m ⊗ n1,m ⊗ n2).

It is easy to see that l is linear in both factors, B-balanced, and
A-linear in the first factor. So using the universal property of
tensor product, there is an A-module homomorphism

f : M ⊗B (N1 ⊕ N2) → (M ⊗B N1) ⊕ (M ⊗B N2), such that

f(m ⊗ (n1,n2)) � (m ⊗ n1,m ⊗ n2).

Let

g : (M ⊗B N1) ⊕ (M ⊗B N2) →M ⊗B (N1 ⊕ N2),

g(x1, x2) :� (idM ⊗ j1)(x1) + (idM ⊗ j2)(x2);

then g is a left A-module homomorphism, and

g(f(m ⊗ (n1,n2)) �(idM ⊗ j1)(m ⊗ n1) + (idM ⊗ j2)(m ⊗ n2)
�m ⊗ (n1, 0) +m ⊗ (0,n2)
�m ⊗ (n1,n2);
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and so g ◦ f is identity. And

f(g(m1 ⊗ n1,m2 ⊗ n2)) �f((idM ⊗ j1)(m1 ⊗ n1) + (idM ⊗ j2)(m2 ⊗ n2))
�f(m1 ⊗ (n1, 0) +m2 ⊗ (0,n2))
�(m1 ⊗ n1, 0) + (0,m2 ⊗ n2)
�(m1 ⊗ n1,m2 ⊗ n2);

and so f ◦ g is identity. Therefore f is an A-module isomor-
phism. It is easy to see that the above mentioned diagram is
commuting. Hence the first row is isomorphic to the second
row; and so it is a S.E.S.. �

Proposition 4 SupposeMB andM′B are two rightB-modules; then
M andM′ are flat right B-modules if and only ifM ⊕M′ is a flat
right B-module.

Proof. Suppose f : N → N′ is an injective homomorphism
of left B-modules. We get the following commuting diagram
0 M ⊗B N (M ⊕M′) ⊗B N M′ ⊗B N 0

0 M ⊗B N′ (M ⊕M′) ⊗B N′ M′ ⊗B N′ 0

j1⊗idN

idM⊗f

p2⊗idN

idM⊕M′⊗f idM′⊗f
j1⊗idN′ p2⊗idN′

By the previous proposition, each row is a S.E.S.. IfM andM′
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are flat, then idM ⊗ f and idM′ ⊗ f are injective; and so by the
Short Five Lemma, idM⊕M′ ⊗ f is injective, which implies that
M ⊕M′ is flat.

IfM ⊕M′ is flat, then idM⊕M′ ⊗ f is injective; and so by the
above commuting diagram we have that idM ⊗ f is injective,
which implies thatM is flat. By symmetry, we deduce thatM′

is also flat; and claim follows. �

Proposition 5 A free left A-module F is flat.

Proof. First we notice that we have proved earlier that fN : N→
N ⊗A A, f(n) :� n ⊗ 1 is an isomorphism of right A-modules.
If φ : N→ N′ is an injective right A-module homomorphism,
then we have the following commuting diagram

N N′

N ⊗A A N′ ⊗A A

φ

fN fN′

φ⊗idA

And so φ ⊗ idA is injective, which implies that A is a flat A-
module. Therefore, by the previous proposition and induction
on n, An is a flat A-module.
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Next we consider the general case; that means we can as-
sume that F �

⊕
i∈IA for some non-empty index set I. Sup-

pose φ : N → N′ is an injective right A-module homomor-
phism. We have to show that φ ⊗ idF : N ⊗A F → N′ ⊗A F is
injective. Suppose that x :�

∑n
j�1nj ⊗ fj ∈ ker(φ ⊗ idF) � 0. So

there is a finite subset J of I such that

f1, . . . , fn ∈
⊕
j∈J

A;

here we are viewing
⊕

j∈JA as a submodule of F. Notice that
F can be viewed as an internal direct sum of FJ :�

⊕
j∈JA and

FI\J :�
⊕

i∈I\JA. We have the following commuting diagram
and by Proposition 3 each row is a S.E.S.:

0 N ⊗A FJ N ⊗A F N ⊗A FI\J 0

0 N′ ⊗A FJ N′ ⊗A F N′ ⊗A FI\J 0

idN⊗i

idN′⊗i

Let x′ :�
∑n
j�1nj ⊗ fj ∈ N ⊗A FJ. So we have

((idN′ ⊗ i) ◦ (φ ⊗ idFJ))(x′) �(φ ⊗ idF) ◦ (idN ⊗ i))(x′)
�(φ ⊗ idF)(x) � 0.
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Using the abovediagram, and the fact that FJ is aflatA-module,
we have that x′ � 0; and so x � 0. �

Theorem 6 A projective left A-module P is flat.

Proof. Since P is projective, it is a direct summand of a free
A-module; that means there is a left A-module K such that
P ⊕ K � F is a free left A-module. Suppose φ : N → N′ is
an injective rightA-module homomorphism. So the following
is a commuting diagram and by Proposition 3 each row is a
S.E.S.:

0 N ⊗A P N ⊗A F N ⊗A K 0

0 N′ ⊗A P N′ ⊗A F N′ ⊗A K 0

idN⊗i

φ⊗idP φ⊗idF
idN′⊗i

By the previous proposition, φ ⊗ idF is injective. Hence by the
above diagram, we deduce that φ ⊗ idP is injective; and so P is
flat. �

Algebras

SupposeA is a ring and f : A→ R is a ring homomorphism
such that f(A) ⊆ Z(R); then we say R is an A-algebra. For
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instance any unital ring R can be viewed as a �-algebra as
we have the ring homomorphism f : � → R, f(n) :� n1R and
f(�) ⊆ Z(R). Notice that anA-algebra is an (A,A)-bimodule. If
R and S are twoA-algebras, then R⊗A S is an (A,A)-bimodule.
Next theorem says that we can make R ⊗A S into anA-algebra.

Theorem 7 Suppose R and S are twoA-algebras; then the following
gives us a well-defined operation on R ⊗A S:

(r ⊗ s)(r′ ⊗ s′) :� rr′ ⊗ ss′

for any r, r′ ∈ R and s, s′ ∈ S. This operation makes R ⊗A S a ring;
and f : A→ R ⊗A S, f(a) :� a(1 ⊗ 1) makes R ⊗A S an A-algebra.

Instead of going through proof of this statement, in the next
lecture, we will give some examples on how one can under-
stand the algebra structure of tensor product of certain alge-
bras.
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