Math200b, lecture 15

Golsefidy

Associativity of tensor product.

Foraring A, let M be the category of left A-modules. Sup-
pose AMg is an (A, B)-bimodule, and gNc¢isa (B, C)-bimodule.
Then tensoring by M and N give us functors Ty : gM — A M
and Ty : ¢cM - gM; andso Tmo Ty : cM — AM. We also
notice that M ®g N is an (A, C)-bimodule; and so tensoring by
M ®g N gives us a functor Tmesn : cM — A M. Next we show

that these are essentially the same functors.

Theorem 1 In the above setting there is a natural isomorphism

n: TM O TN :) TM®BN-



In fact, for any left C-module L, there is a natural isomorphism
M- M (NQ®cL)—> (M®g N)®c L
such thatn (Mm@ (n®1l))=(mon) L.

Before we give a formal proof with more details, let us go over
an alternative approach which is essentially behind the our
formal argument as well:

Suppose M, is an (A, Ait1)-bimodule for i € [1.n]. Then
there is a left A;-module M and fy : My X --- XM, > M
such that the following property holds: suppose N is a left

Ai-module and suppose
f:My X XMy — N

has the following properties: (1) A;-linear in M;, (2) linear
in M; for any 1, and (3) Ai-balanced for i € [2.n — 1]. Then
there is a unique A;-module homomorphism ¢f : M — N
such that ¢ o fy = f, f; has the same properties as f, and M is
generated by the image of f;, as an A;-module. One can show
that any ordering of tensor products of M;’s satisfies the above
universal property; in particular all of them are isomorphic as

Ai-modules and one can check thatis it a natural isomorphism.
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Proof. Suppose L is a left C-module. For a given m; € M,
let

fmg - NXL—> (M®sN)&cL,frp(n,1):=(men)®L

One can check that fy,, is linear in N and L, and C-balanced.
Hence by the universal property of tensor product, there is an

abelian group homomorphism
dmg  N®&cL—> MN)®cL ¢pppy(n®1) =(Mmye@n)® 1.
Now let
f:MX(N&cL) = (M®&pN)&c N, f(m,x) := Gm(x);

in particular, f(m,n ® 1) = (m ® n) ® .. Notice that f is linear
in N ®c L as ¢, is an abelian group homomorphism. For any

n € Nand 1l € L, we have

f(a1m1 + AyMo, N Q 1) :((a1m1 + (121112) X Tl) 1
=(ai1(m®n)+ a(men))®1
=q(MdN)® 1)+ a((medn)®1)

=aq;f(m;,n®1) + af(my,n®1).



Since f is linear in N ®c L and N ®c L is generated by n ® Us as
an abelian group, the above equality implies that f is A-linear
in M.
Foranyn € Nand 1 € L, we have
fm-bn®l)=(m-b)dn)1
=(m®((-n))1
=f(m,(b-n)®1)
=f(m,b- (n®1)).
Since f is linear in N ®c L, scalar multiplication by b is linear,
and N ®c L is generated by n ® l’s as an abelian group, the
above equality implies that f is B-balanced. Hence by the

universal property of tensor product, there is an A-module

homomorphism

N M®g(N®cL) » M®gN)QcL, ni(m®(n®l)) = (men)L.
Similarly there is an A-module homomorphism

AL (M®gN)®cL - M®g(N®cL), AL(men)®1l) = m(n®l).

As pure tensor elements generate tensor products as abelian

groups, the above equalities imply that n; and A; are inverse
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of each other; and so 1 is an A-module isomorphism. It is
easy to check that n’s give us a natural transformation. |
An immediate consequence of the above theorem is the

following:

Proposition 2 Suppose Mg is a flat right B-module and gNc is a
(B, C)-bimodule and a flat right C-module. Then M ®g N is a flat
right C-module. In particular if A is a commutative ring and M and
N are two flat A-modules, then M ®a N is a flat A-module.

Proof. Since M3 is a flat right B-module, Tm : M — Ab is an
exact functor. Since gNc is a flat right C-module, Ty : ¢cM —
M is an exact functor. Andso TmoTn : ¢cM — Abisan exact
functor. By the above theorem there is a natural isomorphism
N Tm o Tn — TmegN; and so Tyggn is an exact functor, which
implies that M ®g N is a flat right C-module.

For a commutative ring A, a left (or right) A-module is an
(A, A)-bimodule; and so the claim follows. H



Tensor product and direct sum

Next we show that tensor product commutes with tensor
product. In your HW assignment you will see how using the
fact that there is a natural isomorphism [[;c; hMt ~ h®eMi)

one can show h®cMi®AN) ~ K(@ecM)®AN; this implies that

@(Mi A N) = (@ Mi) A N.

i€l iel
Here we prove this result for the case where the index set has

two elements.

Proposition 3 Suppose AMg is an (A, B)-bimodule and gN, and
BN are two left B-modules. Then the following is a commutating

diagram and f is an isomorphism of left A-modules.

idm®pg

0 — M &g N; 2 Mg (N @No) 2 Mgp Ny — 0

j1 (M B Nl)69

0 — Mo N, —— —2 s M® Ny, — 0
(M ®g Ny)
where f(M ® (1, ny)) = (M ® Ny, M ® Ny); in particular the first

rowisa S.E.S..



Proof. Let1: M X (N1 @ Ny) —» (M ®3 Np) & (M ®p Ny),
(m, (n,n2)) :=(MOn;, m®ny).

It is easy to see that 1 is linear in both factors, B-balanced, and
A-linear in the first factor. So using the universal property of

tensor product, there is an A-module homomorphism
f:M®g(N;®Nsy) > (M®g N;p) ® (M ®g Ns), such that

flm® (N, ny)) = (M AN, M ny).

Let
g:(M®N;)® (Mg Ny - Mg (N; ®Ny),

g(x1,%2) := (idm ® j1)(x1) + (idm ® j2)(x2);
then g is a left A-module homomorphism, and
g(f(m ® (ny, ) =(idm ® j1)(M ® ny) + (idm ® j2)(M @ M)

=-m & (Tll, O) + M (O, Tlg)

=m ® (N, ny);



and so g o f is identity. And

f(g(m; ® ny, My ® Ny)) =f((idm ® j1)(mMy ® ny) + (idm ® jo)(M2 @ Ny))
:f(m1 X (Tll, 0) + My ® (O, TIQ))
=(m; ®ny,0) + (0, My ® Ny)

=(m; ® Ny, My @ Ny);

and so f o g is identity. Therefore f is an A-module isomor-
phism. It is easy to see that the above mentioned diagram is
commuting. Hence the first row is isomorphic to the second

row; and so itisa S.E.S.. |

Proposition 4 Suppose Mg and M'g are two right B-modules; then
M and M’ are flat right B-modules if and only if M @ M is a flat
right B-module.

Proof. Suppose f : N — N’ is an injective homomorphism

of left B-modules. We get the following commuting diagram

0 — 3 MegN 22N MaeM)os N 22N pMrge N — 0

\Lid]vl@f \LidM@M/®f \LidMMX)f
0 — Ma N 22N M e M) e N 2N M7 @y NF —— 0
By the previous proposition, each row is a S.E.S.. If M and M’
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are flat, then idy ® f and idmr ® f are injective; and so by the
Short Five Lemma, idmewm ® f is injective, which implies that
M & M’ is flat.

If M @ M’ is flat, then idmem’ ® f is injective; and so by the
above commuting diagram we have that idy ® f is injective,
which implies that M is flat. By symmetry, we deduce that M’

is also flat; and claim follows. |
Proposition 5 A free left A-module F is flat.

Proof. First we notice that we have proved earlier that fn : N —
N ®a A, f(n) := n ® 1 is an isomorphism of right A-modules.
If $ : N — N’is an injective right A-module homomorphism,

then we have the following commuting diagram

N LN\

s I

N ®a A m N ®a A

And so ¢ ® ida is injective, which implies that A is a flat A-
module. Therefore, by the previous proposition and induction

onn, A"is a flat A-module.



Next we consider the general case; that means we can as-
sume that F = 5
pose ¢ : N — N’ is an injective right A-module homomor-
phism. We have to show that ¢ ® idr : N®y F — N’ ®x Fis
injective. Suppose that x := 3\;7, nj ® fj € ker(p ® idf) = 0. So

.1 A for some non-empty index set I. Sup-

there is a finite subset | of I such that
fl... f, € @A;
j€]

here we are viewing €P._; A as a submodule of F. Notice that

j€]
F can be viewed as an internal direct sum of Fj:= @ ie] A and
Frg = EDEI\J A. We have the following commuting diagram

and by Proposition 3 each row is a S.E.S.:

idn®1

O—)N@AF]—>N®AF—>N®AFI\]—>O

l l l

idN/®1.,

0 —— N’®AF] ——> N ®x F — N’®AFI\] —> 0
Letx":= };_; nj ® fj € N ®a Fj. So we have

((dn ® 1) o (¢ ® idp))(X') =(d ® idF) o (idn ® 1))(X)
=(¢ ®idp)(x) = 0.
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Using the above diagram, and the fact that Fyisa flat A-module,

we have that x’ = 0; and so x = 0. |
Theorem 6 A projective left A-module P is flat.

Proof. Since P is projective, it is a direct summand of a free
A-module; that means there is a left A-module K such that
P ® K = F is a free left A-module. Suppose ¢ : N — N’ is
an injective right A-module homomorphism. So the following

is a commuting diagram and by Proposition 3 each row is a
S.E.S.:
idn®1

0 — > N®A P ——> N®prF —> Ny K —— 0

\Ld)@idP \LCID Qidr \L

ile ®l

0 — > NP — N1 F ——> N, K ——> 0
By the previous proposition, ¢ ® idr is injective. Hence by the
above diagram, we deduce that ¢ ® idp is injective; and so P is
flat. |

Algebras

Suppose A isaringand f : A — Risaring homomorphism
such that f(A) € Z(R); then we say R is an A-algebra. For
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instance any unital ring R can be viewed as a Z-algebra as
we have the ring homomorphism f : Z — R, f(n) := nlg and
f(Z) € Z(R). Notice thatan A-algebraisan (A, A)-bimodule. If
R and S are two A-algebras, then R®a S is an (A, A)-bimodule.

Next theorem says that we can make R®x S into an A-algebra.

Theorem 7 Suppose R and S are two A-algebras; then the following

gives us a well-defined operation on R ®a S:
(ras)(r®s’) =1 ®ss’

forany r.v" € Rand s, s’ € S. This operation makes R ®x S a ring;
and f: A — R®a S, f(a) := a(l ® 1) makes R ®a S an A-algebra.

Instead of going through proof of this statement, in the next
lecture, we will give some examples on how one can under-
stand the algebra structure of tensor product of certain alge-

bras.
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