Math200b, lecture 16

Golsefidy

Tensor product of algebras

In the previous lecture we defined an A-algebra R; we said
R is called an A-algebra if there is a ring homomorphism c :
A — Z(R) where Z(R) is the center of R. We pointed out that
in this case R is an (A, A)-bimodule. We mentioned that if R,
and R, are two A-algebras, then R; ®4 Ry can be made into an
A-algebra: it is clearly an (A, A)-bimodule, and we can define
a product on R; ®3 Ry such that (11 ® 12)(7] ® 17) = 11717 ® 1217
Here is an important example that can help us understand the

algebra structure of many tensor products.

Theorem 1 Suppose R and S are unital commutative rings, and

¢ : S — S is a ring homomorphism. Using &, we view R as an

1



S-algebra. We extend ¢ to a ring homomorphism ¢ : S[x] — R[x]
by letting d(x) = x; that means &322, aixt) = Yoy d(ai)xt. Then
R (1) < R[x] and

S[x]/T®s R =~ R[x]/Rp(I).

Proof. We already know that R$(I) is an R-module; so to see
it is an R[x]-module, it is enough to observe that x(R$(I)) =
R (xI) € R(D).

Letf : S[x]/IXR — R[x]/Rd(I), f(p(x)+I, 1) := rd(p)+RPp(I).
Well-definedness.

PixX)+I=ps(x)+ [ =p;—po el
=1(b(p1 — p2) € RO(D)
=T1d1(x) + RP(I) = rda(x) + RP(I).

Linearity in each factor is clear. And so by the universal prop-
erty of tensor product, there is an abelian group homomor-
phism 0 : S[x]/I®sR — R[x]/Rd(I) such that O((p(x)+ ) @) =
rp(x) + R(I).

Let § : R[x] — S[xI/1®s R B(ZZ) o) i= T2y + 1) @ 1,

Clearly P is a well-defined abelian group homomorphism.
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Rd(I) C kerp. Suppose p(x) = Y2 six' € Tand r € R.
Then

{B(rd)(p)) = Z:(xi + 1) @ rdp(sy) (S-balanced)
i=0

:Zsi(xi+ Der
i=0
=(p(x)+ ) ®@r=0.

And so we get an abelian group homomorphism,

U R[x]/R(I) — S[x]/T®s R,

W ((Z rixt) + Rcb(I)) = Z(xi +D e
1=0 1=0

0oy =id.
0o ((Z rixt) + Rcb(I)) =9(Z(xi +)®Ti)
i=0 1=0

= > rod + Ro(1).
i1=0



B o0 =id.
Yo 9((2 six' +1) ®) =1I)(Td>(2 six') + Rop(1)
= 2 P(rd(sx’ + R (1))
= z(xi +1) ® (rd(si))
= i(sixi +Her
i=0

:(Z six*+ )
i=0

Pure tensor elements generate the tensor product as an abelian
group and 1 o 0 is an abelian group homomorphism.
Hence 1 and 0 are abelian group isomorphisms.

Ring homomorphism. It is enough to show

O(((pr + D ®T)((p2 + 1) ®12)) = 0((p1 + 1) ® 11)0((p2 + 1) ® 12);

and thisis easy to check. Since 0 is an abelian group homomor-
phism and pure tensor elements generate the tensor product

as an abelian group, by distribution it is enough to check the
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above equality to get that 0 is a ring a homomorphism. n
Here are some applications of Theorem 1.
Example. Show that Q[i]|®qQ][i] =~ Q[i]®Q[i] as Q-algebras.

Proof.

Q[i] ®¢ Q[i] ¥Q[x]/(x* + 1) ®¢ Q[i] (evaluation at i)
~Q[i][x]/{(x* + 1) (Theorem 1)
~Q[i][x]/{(x + D(x — 1))
~Q[i][x]/(x + 1) ® Q[i][x]/{x — 1) (CRT)
~Q[i] @ Q[i] (evaluation at +1)

|
Example. Show that k[x] ® k[x] = k[x, y].
Proof. k[x] ® k[x] = k[x] ® k[y] = k[y][x] = k[x,y] (the
non-trivial step is because of Theorem 1 with I = 0.) |
Example. Suppose A and B are commutative rings and
¢ : A — B is a ring homomorphism. Then A[x] ®x B =~ B[x].
Example. Suppose p is a prime. Then show that



. if x* + 1 has zero in F,
Zli|l®zF, ~\F, @ F, if p is odd and x* + 1 has a zero in IF,,
Folyl/{y?) ifp =2,

where IF,, = Z/pZ and F,.: is a field of order p”.
Proof. By Theorem 1, we have

Z[i]| ®2 F, = Z[x]/(* + 1) ®z F, = Fp[x]/{(x* + 1).

If x* + 1 has no zero in F,, then it is irreducible in F,[x]; and
so (x? + 1) is a maximal ideal of IF,[x]. Hence the factor ring is
a field; and one can see that its order is p.

If x*+ 1 has a zero a in IF, and p is odd, then —a is a distinct
zeroof x>+1;and sox?>+1 = (x+a)(x—a) and gcd(x+a, x—a) = 1.
Hence by the CRT we have

Fp[x]/(x* + 1) =Fy[x]/{(x = a)(x + a))
~Fp[x]/{(x —a) ® Fp[x]/{x + a)
~F, ® I,
If p=2,thenx* +1 = (x + 1), hence x — y + 1 induces an

isomorphism Fo[x]/{(x* + 1) =~ Fy[y]/{y?). |
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Field theory

If F and E are two fields and F is a subfield of E, we say
E/F is a field extension. Suppose E/F is a field extension; we
say « € E is algebraic over F if it is a zero of a non-constant
polynomial p(x) € F[x]. If « € E is not algebraic over F, we say

« is transcendental over F.

Theorem 2 Suppose E/Fis a field extension, o € E is algebraic over
F. Then

1. there is a unique monic polynomial mr(x) € F[x] such that
ker bo = (Mg r(x))
where &y : F[x] — E is the evaluation at « map.
2. myr(x) is irreducible in F[x].
3. The ring F|«] generated by F and o is a field; and

Floe] = Flx]/{mor(x)).

4. Fla] = {Zidzoal aiolt| a; € F} where dy = deg my p(x) where

dp := deg my r(x).



Proof. The evaluation map ¢« : F[x] — E is a ring homomor-
phism. Hence ker ¢ is an ideal of F[x]. And as ¢«(1) =1 # 0,
ker ¢ isaproperideal of F[x]. Since ocis algebraic over F, ker ¢«
is a non-zero ideal. Since F[x]| is a PID and ker ¢ is a proper
ideal non-zero, there is a monic polynomial myr(x) € F[x]
such that ker ¢ = (myr(x)). Notice that (p;) = (p2) if and
only if p; = cpy for some ¢ € F[x]* = F¥; and so there is a
unique monic polynomial that can generate ker ¢.

Since ker ¢ is a non-zero proper ideal, myr(x) ¢ {0} U F~.
Suppose mq r(x) = g(x)h(x); then 0 = my r(x) = g(x)h(ex); and
so either g(x) = 0 or h(x) = 0. W.L.O.G. let us assume that
g(x) = 0. And so g(x) € kerpy = (myr(x)) which implies
(g(x)) € (mur(x)) € (g(x)). Therefore g(x) = cmgyr(x) for
some ¢ € F*; this implies that m, (x) is irreducible in F[x].

By the first isomorphism theorem, Im(dy) = F[x]/ker 4.
By definition,

In(Pa) = {f(0)] f(x) € FIx]} = { ) fiad| fi e Fn e Z*}
i=0

It is easy to see that this is the smallest subring of E that

contians F as a subring and « as an element; and we denote it
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by Flx]. Hence Flx| = F[x]/{m«r(x)). Since F[x] is a PID and
My F(x) is irreducible in F[x], (myr(x)) is a maximal ideal of
F[x]. Therefore F{x]| =~ F[x]|/{myr(x)) is a field.

For any (3 € F[«], there is f(x) € F[x] such that 3 = f(«). By
the Long Division Algorithm, there are q(x), r(x) € F[x] such
that f(x) = q(x)myr(x) + 1(x) and degr < deg mq 5 = do. Hence

B = f(c) = q(o) my p(ax) +7(0) = T(0);

S——
0

and claim follows as degr < dy — 1. |

Lemma 3 Suppose E/F is a field extension, p(x) € F[x] is irre-
ducible, and o € E is a zero of p(x). Then my r(x) = cp(x) for some
c € F~,

Proof. Since p(x) = 0, p(x) € (myr(x)); and so there is g(x) €
F[x] such that p(x) = mur(x)g(x). Since p(x) is irreducible,
either my r(x) is a constant or g(x) is constant. As mqr is not

constant, claim follows. |

Proposition 4 Suppose p(x) € F[x] is irreducible; then there is
a field extension E/F and « € E such that (1) p(«) = 0 and (2)
E = Fl«].



Proof. The above results imply that if there is such a field, then
it should be Flo] = F[x]/{(myr(x)) = F[x]/{p(x)). So we let
E := F[x]/{p(x)). Since F[x] is a PID and p(x) is irreducible in
F[x], {(p(x)) is a maximal ideal of F[x]. Hence E is a field. Let
o = x + (p(x)) € E. Itis clear that E is generated by F and «
as a ring (as the ring of polynomials F[x] is generated by F and
x as a ring). So it is enough to show p(«) = 0. Notice that we
have to identify F with a subfield of E before we evaluate p(x)

at o;; that means we send ¢ € Fto ¢ := c + (p(x)). Suppose

p(x) = XL, cixt; then

i+ (p)))(x + (p(x)))’

M:

plo) =
1=0

(cox' + (p(x))) = <Z coct) + (p(x))

M:’ﬁM:

=
Il
o

=p(x) + (p(x)) = 0.
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