Math200b, lecture 17

Golsefidy

Splitting fields

In the previous lecture we proved (most parts of) the fol-

lowing theorem.

Theorem 1 Suppose E/Fis a field extension, o € E is algebraic over
F. Then

1. there is a unique monic polynomial mq r(x) € F[x] such that
mer()Ip(x) & ple) = 0

for p(x) € F[x].

2. my r(x) is irreducible in F[x].
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3. The ring Fl«| generated by F and « is a field; and
Flo] = Flx]/{me r(x)).

4. Fla] = {Zidzoal aiolt| a; € F} where dy = deg my p(x) where

dy := deg my r(x); in particular dimr Fla| = deg my r(x).

5 {1, ..., % 1} is an F-basis of F[o].

Let’s point out that if E/F is a field extension, E can be viewed
as a vector space over F; the dimension dimfE of E as an F-
vector space is denoted by [E : F| and it called the degree of
the field extension E/F.

Proof. We formulated the above theorem in terms of the
evaluation map ¢ : F[x] — E; for instance part (1) is equiv-
alent to saying that ker ¢4 = (myr(x)). Part (3) can be de-
duced using the first isomorphism theorem and maximal-
ity of (myr(x)); and so on. Now we address the last part.
For any 3 € Fl«], there is a polynomial f(x) € F[x] such
that p = ¢u(f) = f(x) where ¢y is the evaluation map at
«. By long division there are q(x),v(x) € F[x] such that
f(x) = q(x)mur(x) + r(x) and degr < degmyr = do. And
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B = f(o) = qloc) mep(0x) +1(c) = T(ev);
N——
0

hence if 1(x) = Zfzoo_l cix', then B = r(x) = Zidzoal cix' which

implies that the F-span of {1, o, -+, a®~!} is Fl«].

Next we show that 1, e, -+, x%~! are F-linearly indepen-
dent. Suppose Zidzoal cia' = 0; and so «is a zero of g(x) = Zidzoo_l.

Therefore mq r(x)|g(x); comparing their degrees we deduce
that g(x) = 0; and so c; = 0 for any i, and claim follows. |

We also pointed out the next lemma which gives us a way
to find the minimal polynomial of a given algebraic number

(using various irreducibility criteria).

Lemma 2 Suppose E/F is a field extension, and o« € E is a zero of
an irreducible polynomial p(x) € F[x|. Then there is ¢ € F* such

that my r(x) = cp(x).
Next we proved a kind of converse of this lemma:

Lemma 3 Suppose p(x) € F|[x] is irreducible. Then there is a field
extension E/F and « € E such that (1) « is a zero of p(x); and (2)
E = Fl«].



Repeated application of Lemma 3 gives us the following:

Lemma 4 (Existence of a splitting field) Suppose p(x) € F[x] \
F. Then there is a field extension E/F and oy, ..., xn € E such that

1. p(x) =c(x — 1) - - - (x — &n) for some ¢ € F.
2. E= F[oq,...,ocn].

(We say E is a splitting field of p(x) over F.)

Proof. We proceed by induction on the degree of p(x). If
degp = 1, then p(x) = c(x — ) for some « € F; hence E = F and
o; = « satisfy the claim. Since F[x] is a PID, it is a UFD; and
so we can write p(x) as a product of irreducible polynomials
pi(x)’s. By Lemma 3, there is a field extension E;/Fand «; € E;
such that

pi(a;) =0and By = Fi[oy]. (1)

Aspi(x)|p(x), we have p(«;) = 0; and by the factor theorem we
deduce that there is q(x) € E;[x] such that p(x) = (x — 1) q(x).
As deg q = degp—1, by the induction hypothesis there is a field

extension E/E; and as. ..., &, € E such that

qx) =c(x —xg) - (x —an)and E = Eq[axg, ..., 0],  (2)
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for some c € E;. By (1) and (2) we have p(x) = (x — &1)q(x) =
c[liL,(x — o) and E = Floy ][ oo, ..., o] = Flog, ..., on]. And
we notice that c is equal to the leading coefficient of p(x); and
so it is in F¥. And claim follows. |

Next we work towards uniqueness of a splitting field; and

similar to the existence part, we add one zero at a time.

Lemma 5 (Towards Uniqueness of a splitting field) Suppose F
and V' are two fields, © : F — F is a field isomorphism, and

p(x) € F[x] is irreducible.

1. We can extend 0 to an isomorphism © : F[x| — F'[x] by letting
0(x) = x; that means (Y50, aix') := Yo, 0(ai)x". Then 0(p)

is irreducible in F'[x].

2. Suppose E/F and €' [V are field extensions, « € E is a zero of
p(x) and o € ¥’ is a zero of O(p). Then there is

0: Flo] > F[o]
such that /6\(oc) = o and §|F = 0.

Proof. Part (1) is clear; so we focus on the second part. Since



p(x) and O(p) are irreducible by Lemma 2 we have that

(M r(x)) = (p(x)) and (mqr(x)) = (0(p)). 3)

On the other hand, the isomorphism 6 : F[x| — F/[x] induces
an isomorphism 0 : F[x]/{(p(x)) = F[x]/{B(p)),

B(f + (p(x))) := 6(f) + (B(p)). (4)

By Theorem 1 and (3), we have that evaluation maps induce

the following isomorphisms:
FIx]/(p(0) > Fla] and Fx]/(0(p)) 2 Fec].

Hence 0 := $’o00o0d™!: Fla] » F[«] is an isomorphism,
and §|F = 0 and 5(0() = o/; and claim follows. The following

diagram might illustrate better various steps of the argument.

F e Flx] —— F[x]/(p(x)) —— Fla]

| b

P Flx] — FIxI/(00)) —2 Flo]

(@]



Theorem 6 (A bit more than uniqueness of a splitting field)
Suppose F and V' are two fields, © : F — V' is a field isomorphism
and p(x) € F[x] \ F. Suppose E is a splitting of p(x) over F and E’
is a splitting of 8(p) over F. Then there is 0 : E > E such that
Ol = 0.

Proof. First we notice that if all the irreducible factors of p(x) in
F[x]have degree 1, then there are «;’s and c in F such that p(x) =
c[[iL,(x — o); and so E = F and 0(p) = 0(c) [1iL,(x — 0(x1))
which implies E’ = F'. Therefore we 0 = 0 satisfies the claim.
Now similar to the proof of existence, we proceed by in-
duction on the degree of p(x). Base of induction follows from
the above discussion. To show the induction step, we write
p(x) as a product of irreducible polynomials pi(x)’s in F[x]. By
definition of a splitting field, we have that there are «;’s in E

and oc{ ‘s in E’ such that

E=Fo,...,on] px) = cl_[(x— ®i), and
i=1

E=Flo,.... 0] 8p) =0(c) | |(x— ) (5)
i=1
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Since p1(x)|p(x), without loss of generality we can and will
assume that o« is a zero of p;(x); and similarly, as 0(p;)|0(p),
we can and will assume that «] is a zero of 0(p;). By the
previous lemma, there is an isomorphism 0, : Flo;] — F[«]]
such that 0,(x;) = «] and 6;[f = 0. As «; is a zero of p, there
is q(x) € Flo][x] such that p(x) = q(x)(x — «;1). Applying 0, to
both sides, we get that

6(p) = 61(p) = 61(q)(x — 6:1(x1)) = 61(q)(x — }).

Claim. E is a splitting field of q(x) over Flo;]; and B is a
splitting field of ©,(q) over F'[oc]].

Proof of Claim. As p(x) = c[[iL;(x — ;) and p(x) = (x —
®1)q(x), we deduce that q(x) = c[[iL,(x — a;); similarly, as
0(p) = 0(c) [TiL;(x — &) and O(p) = (x — «})0:1(q), we have
0:(q) = 0(c) [T1Ly(x — o). Since

E=Fo,...,on] = (Fleg])[oe, ..., an], and
E' =F[af, ..., 00 ] = (FliDles, ..., o]

claim follows. ]
As degq = degp — 1, by the above Claim we can use the
induction hypothesis for 8; : Flo;] — F[a], q(x), and E and
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E’. Hence there is an isomorphisms 0 : E — F’ such that
§|F[(X1] = 0;. And this implies §|F = 01| = 6 which finishes the
proof. |

By Lemma 4 (Existence of a splitting field) and Theorem 6

(Uniqueness of a splitting field), we get the following theorem.

Theorem 7 (Splitting field) Suppose p(x) € F[x] \ F. Then p(x)
has a splitting field € over F; and if E and €' are two splitting fields
of p(x) over F, then thereis ¢ : E — E such that ¢|r = id.

Finite fields

We will use the existence and uniqueness of splitting fields
to show that for any prime power q = p™ there is a unique field
of order q. We start with investigating a finite field F. Since F
is finite, it has a positive characteristic; and as it is an integral
domain, its characteristic should be a prime number p. Hence
F is a field extension of Z/pZ. Suppose [F : Z/pZ] = d; then
IF| = |(Z/pZ)%] = p¢. And so for any « € F¥, «fF'| = 1, which
implies for any « € F\ {0}, o~ = 1. Thus any « € Fis a zero

of xP* — x. Therefore by the generalized factor theorem there
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is g(x) € F[x] such that

XP'—x = q(x) l_[(x - ).

x€eF

Comparing the degrees of both sides, we deduce that deg q = 0;
and so q(x) = ¢ € F*. Next comparing the leading coefficients

of both sides, we deduce that ¢ = 1; and altogether we get:

Theorem 8 Suppose F is a finite field. Then there is a prime p and
positive integer d such that |F| = p4. And

qu—x:l_[(x—oc)

in F[x].
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