
Math200b, lecture 17

Golsefidy

Splitting fields

In the previous lecture we proved (most parts of) the fol-
lowing theorem.

Theorem 1 Suppose E/F is a field extension, α ∈ E is algebraic over
F. Then

1. there is a unique monic polynomial mα,F(x) ∈ F[x] such that

mα,F(x)|p(x) ⇔ p(α) 󳓬 0

for p(x) ∈ F[x].

2. mα,F(x) is irreducible in F[x].
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3. The ring F[α] generated by F and α is a field; and

F[α] ≃ F[x]/〈mα,F(x)〉.

4. F[α] 󳓬 {󳕐d0−1
i󳓬0 aiα

i | ai ∈ F} where d0 󳓬 degmα,F(x) where
d0 :󳓬 degmα,F(x); in particular dimF F[α] 󳓬 degmα,F(x).

5. {1,α, . . . ,αd0−1} is an F-basis of F[α].

Let’s point out that if E/F is a field extension, E can be viewed
as a vector space over F; the dimension dimF E of E as an F-
vector space is denoted by [E : F] and it called the degree of
the field extension E/F.

Proof. We formulated the above theorem in terms of the
evaluation map φα : F[x] → E; for instance part (1) is equiv-
alent to saying that kerφα 󳓬 〈mα,F(x)〉. Part (3) can be de-
duced using the first isomorphism theorem and maximal-
ity of 〈mα,F(x)〉; and so on. Now we address the last part.
For any β ∈ F[α], there is a polynomial f(x) ∈ F[x] such
that β 󳓬 φα(f) 󳓬 f(α) where φα is the evaluation map at
α. By long division there are q(x), r(x) ∈ F[x] such that
f(x) 󳓬 q(x)mα,F(x) + r(x) and deg r < degmα,F 󳓬 d0. And
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so
β 󳓬 f(α) 󳓬 q(α)mα,F(α)󰁿󲤊󲤊󰁾󰁽󲤊󲤊󰂀

0

+r(α) 󳓬 r(α);

hence if r(x) 󳓬
󳕐d0−1

i󳓬0 cix
i, then β 󳓬 r(α) 󳓬

󳕐d0−1
i󳓬0 ciα

i which
implies that the F-span of {1,α, · · · ,αd0−1} is F[α].

Next we show that 1,α, · · · ,αd0−1 are F-linearly indepen-
dent. Suppose

󳕐d0−1
i󳓬0 ciα

i 󳓬 0; and soα is a zero ofg(x) 󳓬 󳕐d0−1
i󳓬0 .

Therefore mα,F(x)|g(x); comparing their degrees we deduce
that g(x) 󳓬 0; and so ci 󳓬 0 for any i, and claim follows. 󰃈

We also pointed out the next lemma which gives us a way
to find the minimal polynomial of a given algebraic number
(using various irreducibility criteria).

Lemma 2 Suppose E/F is a field extension, and α ∈ E is a zero of
an irreducible polynomial p(x) ∈ F[x]. Then there is c ∈ F× such
that mα,F(x) 󳓬 cp(x).

Next we proved a kind of converse of this lemma:

Lemma 3 Suppose p(x) ∈ F[x] is irreducible. Then there is a field
extension E/F and α ∈ E such that (1) α is a zero of p(x); and (2)
E 󳓬 F[α].

3



Repeated application of Lemma 3 gives us the following:

Lemma 4 (Existence of a splitting field) Suppose p(x) ∈ F[x] \
F. Then there is a field extension E/F and α1, . . . ,αn ∈ E such that

1. p(x) 󳓬 c(x − α1) · · · (x − αn) for some c ∈ F.

2. E 󳓬 F[α1, . . . ,αn].

(We say E is a splitting field of p(x) over F.)
Proof. We proceed by induction on the degree of p(x). If

deg p 󳓬 1, then p(x) 󳓬 c(x−α) for some α ∈ F; hence E 󳓬 F and
α1 󳓬 α satisfy the claim. Since F[x] is a PID, it is a UFD; and
so we can write p(x) as a product of irreducible polynomials
pi(x)’s. By Lemma 3, there is a field extension E1/F and α1 ∈ E1

such that
p1(α1) 󳓬 0 and E1 󳓬 F1[α1]. (1)

As p1(x)|p(x), we have p(α1) 󳓬 0; and by the factor theorem we
deduce that there is q(x) ∈ E1[x] such that p(x) 󳓬 (x − α1)q(x).
As degq 󳓬 deg p−1, by the induction hypothesis there is a field
extension E/E1 and α2, . . . ,αn ∈ E such that

q(x) 󳓬 c(x − α2) · · · (x − αn) and E 󳓬 E1[α2, . . . ,αn], (2)
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for some c ∈ E1. By (1) and (2) we have p(x) 󳓬 (x − α1)q(x) 󳓬
c
󳕑n

i󳓬1(x − αi) and E 󳓬 F[α1][α2, . . . ,αn] 󳓬 F[α1, . . . ,αn]. And
we notice that c is equal to the leading coefficient of p(x); and
so it is in F×. And claim follows. 󰃈

Next we work towards uniqueness of a splitting field; and
similar to the existence part, we add one zero at a time.

Lemma 5 (Towards Uniqueness of a splitting field) Suppose F
and F′ are two fields, θ : F → F′ is a field isomorphism, and
p(x) ∈ F[x] is irreducible.

1. We can extend θ to an isomorphism θ : F[x] → F′[x] by letting
θ(x) 󳓬 x; that means θ(󳕐∞

i󳓬0 aix
i) :󳓬

󳕐∞
i󳓬0 θ(ai)xi. Then θ(p)

is irreducible in F′[x].

2. Suppose E/F and E′/F′ are field extensions, α ∈ E is a zero of
p(x) and α′ ∈ E′ is a zero of θ(p). Then there is

󰁥θ : F[α] ∼−→ F′[α′]

such that 󰁥θ(α) 󳓬 α′ and 󰁥θ|F 󳓬 θ.

Proof. Part (1) is clear; so we focus on the second part. Since
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p(x) and θ(p) are irreducible by Lemma 2 we have that

〈mα,F(x)〉 󳓬 〈p(x)〉 and 〈mα′,F′(x)〉 󳓬 〈θ(p)〉. (3)

On the other hand, the isomorphism θ : F[x] → F′[x] induces
an isomorphism θ : F[x]/〈p(x)〉 → F′[x]/〈θ(p)〉,

θ(f + 〈p(x)〉) :󳓬 θ(f) + 〈θ(p)〉. (4)

By Theorem 1 and (3), we have that evaluation maps induce
the following isomorphisms:

F[x]/〈p(x)〉 φ−→ F[α] and F′[x]/〈θ(p)〉 φ′
−→ F′[α′].

Hence 󰁥θ :󳓬 φ′ ◦ θ ◦ φ−1 : F[α] → F′[α′] is an isomorphism,
and 󰁥θ|F 󳓬 θ and 󰁥θ(α) 󳓬 α′; and claim follows. The following
diagram might illustrate better various steps of the argument.

F F[x] F[x]/〈p(x)〉 F[α]

F′ F′[x] F′[x]/〈θ(p)〉 F′[α′]
θ θ

φ

θ 󰁥θ
φ′

󰃈
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Theorem 6 (A bit more than uniqueness of a splitting field)
Suppose F and F′ are two fields, θ : F → F′ is a field isomorphism
and p(x) ∈ F[x] \ F. Suppose E is a splitting of p(x) over F and E′

is a splitting of θ(p) over F′. Then there is 󰁥θ : E
∼−→ E′ such that

󰁥θ|F 󳓬 θ.

Proof. First we notice that if all the irreducible factors of p(x) in
F[x]have degree 1, then there areαi’s and c in F such thatp(x) 󳓬
c
󳕑n

i󳓬1(x − αi); and so E 󳓬 F and θ(p) 󳓬 θ(c)󳕑n
i󳓬1(x − θ(αi))

which implies E′ 󳓬 F′. Therefore we 󰁥θ 󳓬 θ satisfies the claim.
Now similar to the proof of existence, we proceed by in-

duction on the degree of p(x). Base of induction follows from
the above discussion. To show the induction step, we write
p(x) as a product of irreducible polynomials pi(x)’s in F[x]. By
definition of a splitting field, we have that there are αi’s in E

and α′
i
’s in E′ such that

E 󳓬 F[α1, . . . ,αn], p(x) 󳓬 c

n󳕘
i󳓬1

(x − αi), and

E′
󳓬 F′[α′

1, . . . ,α
′
n], θ(p) 󳓬 θ(c)

n󳕘
i󳓬1

(x − α′
i) (5)
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Since p1(x)|p(x), without loss of generality we can and will
assume that α1 is a zero of p1(x); and similarly, as θ(p1)|θ(p),
we can and will assume that α′

1 is a zero of θ(p1). By the
previous lemma, there is an isomorphism θ1 : F[α1] → F′[α′

1]
such that θ1(α1) 󳓬 α′

1 and θ1 |F 󳓬 θ. As α1 is a zero of p, there
is q(x) ∈ F[α1][x] such that p(x) 󳓬 q(x)(x−α1). Applying θ1 to
both sides, we get that

θ(p) 󳓬 θ1(p) 󳓬 θ1(q)(x − θ1(α1)) 󳓬 θ1(q)(x − α′
1).

Claim. E is a splitting field of q(x) over F[α1]; and E′ is a
splitting field of θ1(q) over F′[α′

1].
Proof of Claim. As p(x) 󳓬 c

󳕑n
i󳓬1(x − αi) and p(x) 󳓬 (x −

α1)q(x), we deduce that q(x) 󳓬 c
󳕑n

i󳓬2(x − αi); similarly, as
θ(p) 󳓬 θ(c)󳕑n

i󳓬1(x − α′
i
) and θ(p) 󳓬 (x − α′

1)θ1(q), we have
θ1(q) 󳓬 θ(c)󳕑n

i󳓬2(x − α′
i
). Since

E 󳓬 F[α1, . . . ,αn] 󳓬 (F[α1])[α2, . . . ,αn], and

E′
󳓬 F′[α′

1, . . . ,α
′
n] 󳓬 (F′[α′

1])[α′
2, . . . ,α

′
n]

claim follows. □
As degq 󳓬 deg p − 1, by the above Claim we can use the

induction hypothesis for θ1 : F[α1] → F′[α′
1], q(x), and E and
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E′. Hence there is an isomorphisms 󰁥θ : E → E′ such that
󰁥θ|F[α1] 󳓬 θ1. And this implies 󰁥θ|F 󳓬 θ1 |F 󳓬 θ which finishes the
proof. 󰃈

By Lemma 4 (Existence of a splitting field) and Theorem 6
(Uniqueness of a splitting field), we get the following theorem.

Theorem 7 (Splitting field) Suppose p(x) ∈ F[x] \ F. Then p(x)
has a splitting field E over F; and if E and E′ are two splitting fields
of p(x) over F, then there is φ : E

∼−→ E′ such that φ|F 󳓬 id.

Finite fields

We will use the existence and uniqueness of splitting fields
to show that for any prime power q 󳓬 pn there is a unique field
of order q. We start with investigating a finite field F. Since F

is finite, it has a positive characteristic; and as it is an integral
domain, its characteristic should be a prime number p. Hence
F is a field extension of 󳖃/p󳖃. Suppose [F : 󳖃/p󳖃] 󳓬 d; then
|F| 󳓬 |(󳖃/p󳖃)d | 󳓬 pd. And so for any α ∈ F×, α|F× | 󳓬 1, which
implies for any α ∈ F \ {0}, αpd−1 󳓬 1. Thus any α ∈ F is a zero
of xpd − x. Therefore by the generalized factor theorem there
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is q(x) ∈ F[x] such that

xp
d − x 󳓬 q(x)

󳕘
α∈F

(x − α).

Comparing the degrees of both sides, we deduce that degq 󳓬 0;
and so q(x) 󳓬 c ∈ F×. Next comparing the leading coefficients
of both sides, we deduce that c 󳓬 1; and altogether we get:

Theorem 8 Suppose F is a finite field. Then there is a prime p and
positive integer d such that |F| 󳓬 pd. And

xp
q − x 󳓬

󳕘
α∈F

(x − α)

in F[x].
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